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Abstract

Understanding narratives requires reasoning about the cause-
and-effect relationships between events mentioned in the text.
While existing foundation models yield impressive results in
many NLP tasks requiring reasoning, it is unclear whether
they understand the complexity of the underlying network
of causal relationships of events in narratives. In this work,
we present CRAB, a new Causal Reasoning Assessment
Benchmark designed to evaluate causal understanding of
events in real-world narratives. CRAB contains fine-grained,
contextual causality annotations for ∼ 2.7K pairs of real-
world events that describe various newsworthy event time-
lines (e.g., the acquisition of Twitter by Elon Musk). Using
CRAB, we measure the performance of several large lan-
guage models, demonstrating that most systems achieve poor
performance on the task. Motivated by classical causal princi-
ples, we also analyze the causal structures of groups of events
in CRAB, and find that models perform worse on causal rea-
soning when events are derived from complex causal struc-
tures compared to simple linear causal chains. We make our
dataset and code available to the research community.

Introduction
Understanding narratives requires understanding the cause-
and-effect relationships between interconnected sub-events
of those narratives. When reading text, humans immediately
induce potential causal links between the events presented
as part of a larger scenario (Grunbaum 1952; Pearl and
Mackenzie 2018). For example, in Figure 1, when reading
an article about the acquisition of Twitter in 2022, a reader
would implicitly assign causal links between events such as
E2: “Elon Musk closes 44 billion dollar deal to buy Twitter”
and E3: “Twitter delists from the NYSE”.

However, building accurate causal mental models of the
situations depicted in narratives poses several complex chal-
lenges. First, human causality judgments are rarely binary.
Instead, they fall on a spectrum depending on human percep-
tion of other mediating or confounding events (Pearl 2009).
For example, in Figure 1, E2 is a mediator event for the
causal relationship of E1 and E3, likely affecting the hu-
man perception of the causal relationship between E1 and
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Figure 1: Events from CRAB that lead to event E6, forming
causal sub-structures with links of various causal strength.

E3. Second, causality judgments depend on the context de-
picting the events in question — a context that can affect
perceptions of causality. For example, a high causal judg-
ment might be assigned between E4 and E6 in Figure 1.
However, the introduction of new information about E5, an-
other potential cause of E6, might downgrade the perceived
intensity of a causal link between E4 and E6. Finally, be-
cause context is critically important to judging causal re-
lationships of events, and most narratives offer an incom-
plete (and sometimes biased) reporting of particular scenar-
ios, multiple sources may be required to paint an accurate
picture of the causal relationships between multiple inter-
connected events.

Addressing these challenges, we introduce CRAB, a new
Causal Reasoning Assessment Benchmark that contains
fine-grained, contextual causality annotations of real-world
events that happened in the past ten years and received
extensive media coverage. To collect the proposed bench-
mark, we design a crowdsourcing framework motivated
by standard causal principles from cognitive science (Cao,
Williamson, and Choi 2022) and actual causality (Halpern



Figure 2: Left: Different structures of causal frames inspired by the responsibility assessment concepts presented in Halpern
2016; right: causal chains (Pearl 2009) present in CRAB. The patterns in structures are formulated based on the different causal
judgment scores among events. The colors of cause-nodes represent the causality strength they have towards the event-node E.

2016) that study how humans perceive and express causal-
ity and responsibility among events. Using this knowledge
frame, we automatically extract the events of newsworthy
stories by integrating large pre-trained LMs into the dataset
creation loop. We then construct causal graphs — combi-
nations of inter-connected events forming different causal
chains and frames, as presented in Figure 2 — from the ex-
tracted events and assess the strength of the causal relation-
ships between these events using human annotators.

Our resulting benchmark, CRAB, contains ∼2.7K high-
quality event pairs, their causal score, and the respective
documents in which the events appeared. All the events are
grouped into 1.8K causal frames and 352 causal chains. We
use this benchmark to assess the abilities of state-of-the-art
(SoTA) models to understand and reason over the causal re-
lationships of real-world events present in a set of contexts
(i.e., online news articles). Our analysis reveals that LLMs
can capture explicit causal statements through pre-training,
but they face difficulty applying causal reasoning to new sce-
narios, limiting their generalization and accuracy in offering
predictions and explanations. We further stratify our results
based on the structures of causal frames and chains, show-
ing that they struggle with assessing the causality between
events derived from complex causal structures compared to
simple linear causal chains, especially when these events are
extracted from different documents.

Preliminaries on Causality
In this section, we define the main causality concepts that
we use to create and analyze CRAB.

Actual Causality Actual causality refers to the causal re-
lationship between specific events and their causes in the
real world (Halpern 2016) and seeks to understand the pre-
cise mechanisms by which one event leads to another, going
beyond mere correlation. Research in causal inference has
attempted to formalize actual causality using causal models
that map how humans perceive and attribute cause and re-
sponsibility to events and their outcomes. However, human
perception of causality usually depends on background con-
text, implicit biases, epistemic state, and lack of information,
making the task of actual causality attribution challenging
to formalize (Matute et al. 2015; Henne et al. 2021). Ad-
ditionally, in cases where the responsibility of an event can
be attributed to more than one preceding event, observers
tend to assign different attribution to the contributing causes
(Wolff and Shepard 2013). Therefore, when events are de-
scribed with natural language, the causal judgments are not
binary but relative, enabling comparisons between causal
events (Icard, Kominsky, and Knobe 2017).

Causal Frames & Causal Chains Humans tend to at-
tribute different degrees of causality between contributory
events, relying primarily on domain and commonsense
knowledge (Kıcıman et al. 2023). Causality research refers
to this set of candidate events relevant to a particular out-
come event as a Causal Frame (Halpern 2016). We con-
struct CRAB to collect causal frame subgraphs, where each
event is associated with its potential causes. Similarly, we
explore the chain of events across time that leads to an
outcome event E (Pearl 2009). We define the causal chain
of an outcome event as the set of paths ending at E in



Figure 3: CRAB data pipeline overview: We collect documents covering newsworthy stories, create a timeline with the main
events extracted from the documents for each story, and crowdsource human annotations on the causal judgments between
the events (score 0 to 100). Based on these scores, we generate a causal graph for each story that can be filtered on different
causal score thresholds. CRAB can also be viewed from the perspective of causal frames and causal chains. Same-color events
originate from the same document.

Type of pairs Pairwise Event Causality Score
Below 20 20-50 50-80 Above 80

In-doc 3.9 25 26.6 44.4
Cross-doc 13.1 37.6 25.3 24

All pairs 11.9 35.9 25.5 26.7

Table 1: Percentage of pairs present in the CRAB, per
causality score class.

the event’s causal graph. CRAB leverages both concepts of
causal chains and temporality, providing a testbed to assess
the ability of language models to perform causal reasoning
in different causal chain structures as depicted in Figure 2
(right).

Dataset Construction
Overview We consider a set of documents covering a
news story. Each document reports several events associ-
ated with that story. The time-ordered list of these extracted
events defines a timeline associated with the story. From a
timeline and its set of documents, we can build a causal
event graph. Our goal is to identify the causal relations be-
tween the events in the graph using the documents in which
these events are mentioned. The full data creation pipeline
is described in Figure 3.

Event Extraction We select news articles from 20 sto-
ries about major events that happened around the world and
we extract the main events mentioned in each document. In
contrast to prior work (Shi and Lin 2019), we use a genera-
tive approach to extract the main events given a news piece.

Specifically, we prompt GPT-3 (text-davinci-003,
Ouyang et al. 2022) to extract the main events from a given
document (similar to Veyseh et al. 2021). Because gener-
ative methods come with the limitation of hallucinations
and wrong outputs, we manually filter extracted events to
keep only the valid generations. After filtering, our dataset
contains 384 unique events. As causality is conditioned on
temporality, we manually create a timeline of the extracted
events for each of the 20 stories, by considering all docu-
ments associated with the story. While building these time-
lines, we disambiguate the events mentioned in different
documents by merging differently phrased instances of the
same event.

Event Causality Linking In the final stage of our
pipeline, we collect causality judgments about all event pairs
extracted from the documents related to a specific story
(2730 pairs). Motivated by the way cognitive studies capture
judgments about actual causality (Gerstenberg et al. 2021),
we define the causality between real-world events not as a
single binary score but as a continuous value from 0 to 100,
enabling finer analysis and predictions of causal judgment.
We qualify 44 Amazon Mechanical Turk workers, and for
each pair of events, task 7 workers with providing a judg-
ment for the causal link between the events (see Appendix
for details regarding annotators’ agreement scores).

Dataset Analysis
CRAB consists of a set of 173 documents regarding 20
different stories discussing newsworthy real-world events.
It contains 384 extracted unique event instances and 2730
event pairwise causality scores (see Tables 5 and 6 in Ap-
pendix for additional descriptive statistics). The experiments



Tasks Models All pairs In-doc Cross-doc Pre-Jan 2022 Post-Jan 2022

Pairwise Causality Score Flan-Alpaca 21.6 14.9 22.4 22.0 21.3
GPT-3 25.8 24.4 25.4 26.6 25.2
GPT-4 54.7 59.0 53.7 56.4 53.5

Multi-class Pairwise Causality Flan-Alpaca 11.0 12.2 10.8 11.2 10.7
GPT-3 35.0 27.4 34.9 35.0 34.5
GPT-4 45.6 46.1 45.0 43.1 46.7

Binary Pairwise Causality Flan-Alpaca 60.1 73.8 56.7 62.1 58.7
GPT-3 57.2 67.0 55.0 56.9 57.5
GPT-4 73.9 80.0 72.6 76.5 72.0

Graded Causality (MCQ) Flan-Alpaca 39.9 53.2 29.3 44.1 35.4
GPT-3 59.7 70.9 50.7 64.5 54.5
GPT-4 53.8 67.3 43.1 63.3 44.5

Table 2: Macro F1-scores on SoTA LLMs on all Pairwise Causality Inference tasks and the Graded Causality Inference MCQ
task. For the MCQ task, we stratify the results for in-doc and cross-doc based on whether the effect & correct cause are extracted
from the same document.

presented in the following section are based on these 4
classes reported in Table 1. We stratify the dataset and get
the causal frame of each event and we categorize these sub-
graphs based on the strength of causal scores between them
(in-degree edges of the causal frame graph). Similarly, we
extract causal chains from CRAB based on the three causal
structures; Mediation, Confounding, and Collision (Pearl
2009), depicted in Figure 2 (right).

Experimental Setup
To evaluate how language models reason about causality,
we define different experimental frameworks covering vari-
ous causality assessment scenarios, similar to Kıcıman et al.
(2023). We investigate three tasks in ascending order of
complexity in terms of causal structure: pairwise causality
inference, graded causality inference, and causal chain infer-
ence. We use two decoder-only instruction-following API-
based models, GPT-3 (text-davinci-003, 175B size)
and GPT-4, with the settings suggested by OpenAI (2023): a
temperature of 0.3 and a maximum length of 256 tokens. We
additionally test CRAB using Flan-Alpaca-GPT4-XL (Chia
et al. 2023), an open-source 3B size encoder-decoder model
fine-tuned on instruction-following datasets: FLAN (Long-
pre et al. 2023) and GPT4-Alpaca.1

Pairwise Causality Inference To evaluate Pairwise
Causality Inference, we first prompt the model to generate
a scalar causality score between two events given a con-
text (the documents from which the events were extracted),
mimicking the benchmark human annotations. We mapped
the causality intervals to descriptions of different degrees of
causality and augmented the prompt instructions with score
ranges and their explanations. The 4 classes and definitions
are as follows (i) High causality: a link between events that

1https://instruction-tuning-with-gpt-4.github.io/

are definitely causally related to each other (causal score
above 80), (ii) Medium causality: a link between events that
might be slightly causally related to each other (causal score
between 50 and 80), (iii) Low causality: a link between
events that have a little causal connection (causal score be-
tween 20 and 50), and (iv) No causality: independent events
(causal score lower than 20). We compare it with the average
annotators’ score in CRAB. The full prompt can be found
in Table 12 in Appendix. We then evaluate the model’s an-
swer by mapping the generated score to the four classes and
computing the Macro-F1 score (Pairwise Causality Score
in Table 2). We also experiment with binary and multi-class
classification tasks (Binary Pairwise Causality and Multi-
class Pairwise Causality in Table 2, respectively), prompt-
ing the model to output a causality class instead of a raw
score. The prompts for these tasks can be found in Tables 9
and 10 in Appendix.

Graded Causality Inference As previously described,
one of the main concepts in actual causality is graded cau-
sation or responsibility (Halpern 2016), which is the relative
degree to which an event causally contributes to an effect.
Thus, we go beyond pairwise causality and prompt models
to rank the events that contributed more to the effect. We
create a Multiple Choice Question (MCQ) Answering task
that asks the model to provide the most contributory to an
effect cause among several events. We construct the dataset
for the experiment by using the causal frames of each event
and selecting 4 possible causes. We then ask the model to
select, based on these 4 choices, the cause with the highest
causality score (see the prompt in Table 11 in Appendix).

Causal Chain Inference Pairwise causality provides a
strong indication of the causal relationship between two
events. However, these events are usually part of a larger
chain of events with complex causal patterns. In this experi-
ment, we consider not only the relations between the causes



MODELS All Frames SD D SC C M N
F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Flan-Alpaca 10.2 0.8 5.0 0.1 19.8 11.1 3.7 0.0 8.0 0.1 13.0 0.7 6.4 3.0
GPT-3 28.8 3.3 29.1 4.1 30.5 16.6 31.9 3.3 31.0 4.1 29.0 0.0 19.3 9.1
GPT-4 38.9 6.1 45.2 16.7 39.8 11.1 40.6 6.7 38.3 3.1 36.8 1.3 39.4 24.2

Table 3: Macro F1 and EM scores on SoTA LLMs for Graded Causality Inference stratified for different Causal Frame types.
SD is for Strong Direct Causality; D is for Direct Causality; SC is for Strong Contributory Causality; C is for Contributory
Causality; N is for No Causality; M is for Mixed Causality. Please refer to Figure 2 for detailed visualization of the different
Causal Frame structures.

MODELS Mediation Confounding Collider
F1 EM F1 EM F1 EM

Flan-Alpaca 49.4 25.4 38.1 10.0 29.3 8.2
GPT-3 40.2 10.6 38.1 9.7 28.0 9.7
GPT-4 38.2 5.8 44.9 20.9 25.1 5.4

Table 4: Macro F1 and EM scores on SoTA LLMs for the
Causal Chain Inference stratified in different Causal Chain
structures.

and the effect in causal frames but also how the causes are
related to one another. We stratify the results of the pairwise
causality experiment based on the three causal chain struc-
tures we mentioned; Mediation, Confounding, and Collider
(Figure 2 (right)). Similarly to the previous experiment, we
extract causal chains that fit the three patterns and compute
the F1-score and the Exact Match (EM) between CRAB’s
causal class annotations (4 classes) and the causal class pre-
dictions for each edge in the causal chains. We report each
model’s average scores in Table 4.

Experimental Results
Causal Discovery Table 2 provides the pairwise causality
inference scores for the three pairwise sub-tasks. All mod-
els perform poorly on CRAB, with GPT-4 showing a higher
performance in most of the tasks compared to GPT-3 and
Flan-Alpaca. Models under-perform when assessing both
Binary and Multi-class Pairwise Causality inference, espe-
cially when assessing medium and no causality. Further in-
vestigation of the results shows that in these cases of mis-
classification, the model tends to predict high causality in-
stead of medium causality, and medium causality instead of
no causality, demonstrating that models tend to hallucinate
stronger causal relationships than humans perceive. Misclas-
sified cases can be found in Figure 5.

Assessing Responsibility Going beyond pairwise causal-
ity and assessing whether LLMs can assign responsibility
among potential causes of a specific event, we show that
models fail to capture complex causal structures. Table 3
shows that models perform better when assessing the causal-
ity of graph structures that contain causal scores that are
well-separated from each other. Additionally, from Table 4,
we notice a common struggle among all models regarding

the Collider case.

Multi-document Causal Reasoning In Table 2, we re-
port results for causal score prediction for both event pairs
that are found in the same document and event pairs found
across documents. In all experimental settings, we see better
performance for event pairs extracted from the same docu-
ment (in-doc pairs). Based on these results, models tend to
perform well in the causal discovery of in-doc event pairs
since documents usually express causal relationships in an
explicit way, likely because narrators seek to draw explicit
causal links between events. Interestingly, in the MCQ set-
ting, we find that GPT-4 wrongly assigns the highest respon-
sibility to events that belong in the same document 33% of
the time, indicating that models themselves may be biased to
prefer in-document causal links, even when humans identify
a different causal link across multiple documents. This re-
sult suggests that models are able to capture causality when
it is explicitly referred to in one context but struggle when it
is implicitly inferred across documents.

Memorization vs. Generalization Due to the lack of
transparency of closed-source GPT models, concerns arise
regarding whether LLMs, pre-trained on extensive internet
data, were subjected to the test set of benchmarks during
their pre-training phase (Jacovi et al. 2023). We study how
the performance of GPT-3/4 varies when identifying causal-
ity for real-world events occurring pre-Jan 2022 and post-
Jan 2022 (the official threshold date for their training data
source). We observe a substantial drop in performance for
graded causality and pairwise causality score, suggesting
that the performance of models can be affected by knowl-
edge of the events memorized during their pretraining stage.

Related Work
There has been extensive research on introducing challeng-
ing causal benchmarks on commonsense causal reasoning
(Mooij et al. 2016; Kalainathan and Goudet 2019; Bethard
et al. 2008; Dalal, Buitelaar, and Arcan 2023), as well as
assessing causal reasoning from the perspective of plausi-
ble alternatives and counterfactuals (Roemmele, Bejan, and
Gordon 2011; Frohberg and Binder 2021; Srivastava et al.
2022; O’Neill, Quillien, and Henne 2022). Similar to our
work, there have been attempts to create benchmarks that
incorporate the cross-document setup (Welbl, Stenetorp, and
Riedel 2018; Tu et al. 2019) and causal structures (Jin et al.



2023a), but not on real-world events. Additionally, existing
studies investigate whether NLP models understand causal-
ity (Feder et al. 2022; Jin et al. 2023b; Zhang et al. 2023),
providing methods to quantify the causal abilities of lan-
guage models (Cao, Williamson, and Choi 2022; Yu, Li, and
Wang 2019; Dalal, Buitelaar, and Arcan 2023). Another line
of work studies the improvement of causal reasoning gen-
eration using instruction prompting (Kıcıman et al. 2023),
Chain-of-Thought (CoT; Wei et al. 2022), and prompt aug-
mentation (Schick et al. 2023). CRAB differs from prior
work regarding the nature of its events, real-world events,
and the type of causal reasoning that assesses LLMs, actual
causality.

Conclusions
This work introduces CRAB, a new causal reasoning bench-
mark that contains causality annotations for ∼2.7K pairs of
real-world events. Using CRAB, we explore how LLMs as-
sess the causal relationships between events when the causal
signal comes from different contexts. Additionally, we as-
sess LLMs performance in identifying and assessing com-
plex causal structures. Our findings suggest that SoTA lan-
guage models perform poorly in pairwise causal inference
and responsibility assignment when events are spread across
documents. Furthermore, this weak performance is ampli-
fied when LLMs must identify causal relationships in com-
plex causal structures rather than simple linear chains.

Acknowledgements
We thank Negar Foroutan, Reza Banaei, Deniz Bayazit,
Beatriz Borges and Mete Ismayilzada for reading and pro-
viding comments on drafts of this paper. We also grate-
fully acknowledge the support of the Swiss National Sci-
ence Foundation (No. 215390), Innosuisse (PFFS-21-29),
the EPFL Science Seed Fund, the EPFL Center for Imag-
ing, Sony Group Corporation, and the Allen Institute for AI.

References
Bethard, S.; Corvey, W. J.; Klingenstein, S.; and Martin,
J. H. 2008. Building a Corpus of Temporal-Causal Struc-
ture. In LREC.
Cao, A.; Williamson, G.; and Choi, J. D. 2022. A Cognitive
Approach to Annotating Causal Constructions in a Cross-
Genre Corpus. In Proceedings of the 16th Lingusitic Anno-
tation Workshop (LAW-XVI) within LREC2022, 151–159.
Chia, Y. K.; Hong, P.; Bing, L.; and Poria, S. 2023.
INSTRUCTEVAL: Towards Holistic Evaluation of
Instruction-Tuned Large Language Models. arXiv preprint
arXiv:2306.04757.
Dalal, D.; Buitelaar, P.; and Arcan, M. 2023. CALM-Bench:
A Multi-task Benchmark for Evaluating Causality-Aware
Language Models. In Findings of the Association for Com-
putational Linguistics: EACL 2023, 296–311.
Ebner, S.; Xia, P.; Culkin, R.; Rawlins, K.; and Van Durme,
B. 2020. Multi-Sentence Argument Linking. In Proceedings
of the 58th Annual Meeting of the Association for Computa-
tional Linguistics.

Feder, A.; Keith, K. A.; Manzoor, E.; Pryzant, R.; Sridhar,
D.; Wood-Doughty, Z.; Eisenstein, J.; Grimmer, J.; Reichart,
R.; Roberts, M. E.; et al. 2022. Causal inference in natural
language processing: Estimation, prediction, interpretation
and beyond. Transactions of the Association for Computa-
tional Linguistics, 10: 1138–1158.
Frohberg, J.; and Binder, F. 2021. Crass: A novel data set
and benchmark to test counterfactual reasoning of large lan-
guage models. arXiv preprint arXiv:2112.11941.
Gerstenberg, T.; Goodman, N. D.; Lagnado, D. A.; and
Tenenbaum, J. B. 2021. A counterfactual simulation model
of causal judgments for physical events. Psychological re-
view, 128(5): 936.
Grunbaum, A. 1952. CAUSALITY AND THE SCIENCE
OF HUMAN BEHAVIOR. American Scientist, 40(4): 665–
689.
Halpern, J. Y. 2016. Actual Causality. MiT Press. ISBN
9780262336611.
He, P.; Gao, J.; and Chen, W. 2021. Debertav3:
Improving deberta using electra-style pre-training with
gradient-disentangled embedding sharing. arXiv preprint
arXiv:2111.09543.
Henne, P.; O’Neill, K.; Bello, P.; Khemlani, S.; and
De Brigard, F. 2021. Norms affect prospective causal judg-
ments. Cognitive Science, 45(1): e12931.
Icard, T. F.; Kominsky, J. F.; and Knobe, J. 2017. Normality
and actual causal strength. Cognition, 161: 80–93.
Jacovi, A.; Caciularu, A.; Goldman, O.; and Goldberg, Y.
2023. Stop Uploading Test Data in Plain Text: Practical
Strategies for Mitigating Data Contamination by Evaluation
Benchmarks. ArXiv, abs/2305.10160.
Jin, Z.; Chen, Y.; Leeb, F.; Kamal, O.; Lyu, Z.; Blin, K.;
Gonzalez, F.; Kleiman-Weiner, M.; Gresele, L.; Sachan, M.;
et al. 2023a. CLADDER: Assessing Causal Reasoning in
Language Models. preprint.
Jin, Z.; Liu, J.; Lyu, Z.; Poff, S.; Sachan, M.; Mihalcea, R.;
Diab, M.; and Schölkopf, B. 2023b. Can Large Language
Models Infer Causation from Correlation? arXiv preprint
arXiv:2306.05836.
Kalainathan, D.; and Goudet, O. 2019. Causal discovery
toolbox: Uncover causal relationships in python. arXiv
preprint arXiv:1903.02278.
Kıcıman, E.; Ness, R.; Sharma, A.; and Tan, C. 2023. Causal
reasoning and large language models: Opening a new fron-
tier for causality. arXiv preprint arXiv:2305.00050.
Longpre, S.; Hou, L.; Vu, T.; Webson, A.; Chung, H. W.;
Tay, Y.; Zhou, D.; Le, Q. V.; Zoph, B.; Wei, J.; et al. 2023.
The flan collection: Designing data and methods for effec-
tive instruction tuning. arXiv preprint arXiv:2301.13688.
Matute, H.; Blanco, F.; Yarritu, I.; Dı́az-Lago, M.; Vadillo,
M. A.; and Barberia, I. 2015. Illusions of causality: how they
bias our everyday thinking and how they could be reduced.
Frontiers in psychology, 6: 888.
Mooij, J. M.; Peters, J.; Janzing, D.; Zscheischler, J.; and
Schölkopf, B. 2016. Distinguishing cause from effect using



observational data: methods and benchmarks. The Journal
of Machine Learning Research, 17(1): 1103–1204.
OpenAI, R. 2023. GPT-4 technical report. arXiv, 2303–
08774.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.;
et al. 2022. Training language models to follow instructions
with human feedback. Advances in Neural Information Pro-
cessing Systems, 35: 27730–27744.
O’Neill, K.; Quillien, T.; and Henne, P. 2022. A counter-
factual model of causal judgment in double prevention. In
Conference in computational cognitive neuroscience.
Pearl, J. 2009. Causal inference in statistics: An overview.
Statistics Surveys, 3: 96–146.
Pearl, J.; and Mackenzie, D. 2018. The book of why: the new
science of cause and effect. Basic books.
Roemmele, M.; Bejan, C. A.; and Gordon, A. S. 2011.
Choice of Plausible Alternatives: An Evaluation of Com-
monsense Causal Reasoning. In AAAI spring symposium:
logical formalizations of commonsense reasoning, 90–95.
Romanou, A.; Smeros, P.; Castillo, C.; and Aberer, K. 2020.
Scilens news platform: a system for real-time evaluation of
news articles. arXiv preprint arXiv:2008.12039.
Schick, T.; Dwivedi-Yu, J.; Dessı̀, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.
Toolformer: Language models can teach themselves to use
tools. arXiv preprint arXiv:2302.04761.
Shi, P.; and Lin, J. 2019. Simple bert models for rela-
tion extraction and semantic role labeling. arXiv preprint
arXiv:1904.05255.
Smeros, P.; Castillo, C.; and Aberer, K. 2019. Scilens: Eval-
uating the quality of scientific news articles using social me-
dia and scientific literature indicators. In The World Wide
Web Conference, 1747–1758.
Srivastava, A.; Rastogi, A.; Rao, A.; Shoeb, A. A. M.; Abid,
A.; Fisch, A.; Brown, A. R.; Santoro, A.; Gupta, A.; Garriga-
Alonso, A.; et al. 2022. Beyond the imitation game: Quanti-
fying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Tu, M.; Wang, G.; Huang, J.; Tang, Y.; He, X.; and Zhou,
B. 2019. Multi-hop reading comprehension across multiple
documents by reasoning over heterogeneous graphs. arXiv
preprint arXiv:1905.07374.
Veyseh, A. P. B.; Lai, V. D.; Dernoncourt, F.; and Nguyen,
T. H. 2021. Unleash GPT-2 Power for Event Detection. In
Annual Meeting of the Association for Computational Lin-
guistics.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Chi, E.;
Le, Q.; and Zhou, D. 2022. Chain of thought prompting
elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903.

Welbl, J.; Stenetorp, P.; and Riedel, S. 2018. Constructing
datasets for multi-hop reading comprehension across docu-
ments. Transactions of the Association for Computational
Linguistics, 6: 287–302.
Wolff, P.; and Shepard, J. 2013. Causation, touch, and the
perception of force. In Psychology of learning and motiva-
tion, volume 58, 167–202. Elsevier.
Yu, B.; Li, Y.; and Wang, J. 2019. Detecting causal language
use in science findings. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), 4664–4674.
Zhang, C.; Bauer, S.; Bennett, P.; Gao, J.; Gong, W.;
Hilmkil, A.; Jennings, J.; Ma, C.; Minka, T.; Pawlowski,
N.; et al. 2023. Understanding causality with large lan-
guage models: Feasibility and opportunities. arXiv preprint
arXiv:2304.05524.

Appendix
Dataset Construction Details
News Article Selection Based on a selection of 20 dis-
tinctive stories, we crawl the web and select the top 20 news
articles per story. When extracting articles related to a story
that happened many years before, we noticed that the re-
trieved articles also covered recent events that were loosely
related to the story’s main events. Therefore, we use a time
window of 9 months when extracting the articles for each
story to keep only articles that have been published around
the time that the respective story happened.

Causal frame # frames # pairs In-doc Cross-doc

SD 24 85 25 60
D 18 70 22 48

SC 30 254 26 228
C 98 789 103 686
N 33 100 18 82
M 149 1386 156 1230

Table 5: Number of frames for different types of causal
frames (see Figure 2) along with the number of event pairs
additionally stratified for the in- and cross-doc cases. SD is
for Strong Direct Causality; D is for Direct Causality; SC
is for Strong Contributory Causality; C is for Contributory
Causality; N is for No Causality; M is for Mixed Causality.

Causal chain # Chains

Mediation 774
Confounding 924

Collider 115

Table 6: Number of chains for different types of causal
chains (see Figure 2).



Figure 4: Dataset construction pipeline. Once events are extracted from the documents, we order them on time and formulate
story timelines. Conditioned on the temporal ordering, we create all combinations of events in the document and pass the in-
document pairs to annotators. We perform a similar process for the event pairs extracted from different documents (cross-doc),
including an extra step of merging document timelines into one before taking the pair combinations.

Event Extraction Using a generative approach for event
extraction has two main benefits, confirmed through exten-
sive experimental analysis. First, when prompted correctly,
generative models successfully output structured informa-
tion at the requested semantic abstraction, which leads to
higher precision when extracting events. Second, the seman-
tic granularity of the events we want to extract is between
sentence and document level, meaning that we aim for the
main events covered in the article and not syntactic events as
existing works use (Ebner et al. 2020). Similarly to Smeros,
Castillo, and Aberer (2019) and Romanou et al. (2020), we
filter the top 20 news articles per story. We remove the ones
with less than 100 words and those with paywalls or provide
re-directions to the original referred news article. Finally, we
clip the article to 250 words and round to the end of the sen-
tence token. We end up using a total number of 384 news
documents as the main test bed for event extraction.

Crowdsourcing Causality Scores For the in-document
annotations, we show the annotators the documents and ask
them to assess 3 event pairs. For the cross-document ones,
we give 2 documents at a time, along with 5 event pairs. Fig-
ure 4 depicts the pair creation process that served as input
for Amazon Mechanical Turk experiments. To select native
English speakers, we focus on the group of workers whose
locations are in the USA.

We also ran a 2-phase qualification where we evaluated
the quality of annotators on our task and selected the ones
with a higher than 80% score on our qualification task. Fi-
nally, 44 out of 400 workers are selected as qualified. We
pay each worker $0.80 for doing every 3 annotations for the
in-document event pairs and $0.90 for doing 5 annotations
for the cross-document pairs. Figures 6 and 7 depict the task
instructions and annotation script used for crowdsourcing.

Inter-rater agreement We have a total of 44 workers
scoring the causality between 2730 pairs of events. All pairs
are annotated by at least 7 annotators and, at most, 10
(around 21.3k annotations). We divide the causality score
into 4 equal classes and compute Krippendorff’s α. We con-
sider the ground truth as the majority vote. Table 8 shows
Krippendorff’s α for different groups of classes. As ex-
pected, the agreement to discriminate between the lowest
causality class and the highest one is the highest, while it
is harder for annotators to agree on discriminating between
nearby classes. Krippendorff’s α for all classes is 0.27, and
0.33 for the further classes. We note that the high number
of annotators per sample increases the raw number of dis-
agreements. Moreover, contrary to classical annotation situ-
ations where a small number of annotators label each sam-
ple, the Amazon Turk settings involve many different anno-
tators participating in a task. Thus each sample is annotated
by different workers, augmenting the variance and decreas-
ing the agreement rate.

Expert Annotation Given the low agreement, we select
pairs where the average score falls on the boundary of the
4 classes and the variance between annotators is high to
be validated by experts. This subset consists of 26.7%
of the benchmark. This step is done by asking three ex-
pert annotators (NLP researchers who are familiar with the
task of causal inference) further to annotate event pairs’
causal scores and classes. Given the average causal score,
the experts were asked to choose which of the neighbor-
ing classes was a better class for the event pair, updating
the score accordingly. The inter-rater agreement, using Krip-
pendorph’s alpha, between experts is 0.70. These expert-
validated causal scores and the remaining low-variance sam-
ples are used for CRAB.



Causality Tasks Model Split by Date Split by Story Random split
Pairwise Causality Score DeBERTa-large 21.6 21.4 22.9

Llama2 7B 24.3 26.3 32.8
Multi-class Pairwise Causality DeBERTa-large 29.4 35.8 60.8

Llama2 7B 23.2 23.1 32.7

Binary Pairwise Causality DeBERTa-large 62.5 74.2 76.6
Llama2 7B 51.1 51.9 58.5

Table 7: Macro F1-scores on test set for fine-tuned models on all Pairwise Causality Inference tasks. We stratify the results for
Date, Story and Random splits. The best performance for each causality task is bolded.

Causality classes Size α

[1, 2] 1310 0.04
[2, 3] 1295 0.08
[3, 4] 1429 0.12
[1, 4] 1444 0.38

[1, 2, 3, 4] 2730 0.28

Table 8: Krippendorff’s α for different groups of classes.

Experimental Results with Fine-Tuned LMs

We initially evaluated our proposed dataset on decoder-only
models because decoder-only models (especially API-based
ones such as GPT-3 / 3.5 / 4) have become important pil-
lars of AI products, motivating researchers to benchmark
their capabilities and identify their biases and limitations.
However, it is important to additionally evaluate our causal
benchmark on different architectures and inference tech-
niques, providing additional insight into the difficulty of the
task. On that note, we fine-tuned DeBERTa-v3-large (He,
Gao, and Chen 2021) and Llama2-7B (Touvron et al. 2023)
models.

We fine-tune both models on the 3 different pairwise
causality tasks presented in our paper. For each task, we cre-
ate 3 different train/test splits (75%/25% ratio) to study the
generalization ability of the models after fine-tuning; Date:
we select 5 out of the 20 most recent stories for the test set
and the rest for the train, Story: we randomly select 5 sto-
ries for the test set and the rest for the train, and Random:
we randomly split the event pairs dataset, regardless of the
story or the date.

The results in Table 7 show that fine-tuned DeBERTa-
large (encoder-only) models fail to perform well on CRAB,
showing that our benchmark challenges the current state-
of-the-art fine-tuned methods. Compared to decoder-only
models in a few-shots setting, DeBERTa-large tends to un-
derperform when splitting by story, except for the easier
binary pairwise causality prediction task. Additionally, as
expected, the experiments with the random data split have
higher scores, which validate the information leakage of the
context from the train to test set and verify that models rely
on the context (articles) when assessing the causal relation-
ship of the two events. A subsequent study on how fine-
tuning improves pre-trained LLMs causal reasoning abilities

would be interesting, and we hope that our paper provides a
strong benchmark for pursuing this research direction.



PROMPT: Binary Pairwise Causality

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event 1: <EVENT 1>
Event 2: <EVENT 2>
Did Event 1 cause Event 2 to happen?
Please answer in a single word: yes or no.

Table 9: Prompt for the Binary Pairwise Inference task.

PROMPT: Multi-class Pairwise Causality - 4 Classes

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event 1: <EVENT 1>
Event 2: <EVENT 2>
How much did event 1 cause event 2 to happen?
[A] High causality: Event 1 is definitely
responsible for Event 2.
[B] Medium causality: Event 1 might have
been responsible for Event 2.
[C] Low causality: The context gives a
little indication that there is a connection
between the two events, but background info
might suggest a low causal connection.
[D] No causality: Events are somehow related
but definitely NOT causally related.

Let’s work this out in a step-by-step way
to be sure that we have the right answer.
Then provide your final answer within the
tags, <Answer>A/B/C/D</Answer>.

Table 10: Prompt for the Multi-class Pairwise Inference
task.

PROMPT: Graded Pairwise Causality - MCQ

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event: <EFFECT>

What is the most likely cause of this event?
[A] <CAUSE 1>
[B] <CAUSE 2>
[C] <CAUSE 3>
[D] <CAUSE 4>

Let’s work this out in a step-by-step way
to be sure that we have the right answer.
Then provide your final answer within the
tags, <Answer>A/B/C/D</Answer>.

Table 11: Prompt for the Graded Pairwise Inference task.

PROMPT: Pairwise Causality Score

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event 1: <EVENT 1>
Event 2: <EVENT 2>

What is the causality score between Event 1 and
Event 2 from 0 to 100?
Score above 80: Event 1 is definitely responsible
for Event 2.
Score between 50-80: Event 1 might have been
responsible for Event 2.
Score lower than 50 Events are somehow related
but definitely NOT causally related.

Let’s work this out in a step-by-step way
to be sure that we have the right answer.
Then provide your final answer within the
tags, <Answer>score</Answer>.

Table 12: Prompt for the Pairwise Causality Score Infer-
ence task.



Figure 5: Failed predictions of GPT-4 regarding CRAB on high and no causal classes.



Figure 6: Amazon mTurk instructions script. Annotators need to perform the pairwise causality assessment task based on these
instructions.



Figure 7: Amazon mTurk example script for annotating event pairs. Based on the instructions, annotators need to read the
narratives and assess the causal relationship.


