
Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning
Mayukh Das

mayukh.das@samsung.com

Samsung R&D Institute, Bangalore

Devendra Singh Dhami

devendra.dhami@utdallas.edu

The University of Texas at Dallas

Yang Yu

yangyu@hlt.utdallas.edu

The University of Texas at Dallas

Gautam Kunapuli

gautam.kunapuli@verisk.com

Verisk Analytics, Inc.

Sriraam Natarajan

sriraam.natarjan@utdallas.edu

The University of Texas at Dallas

ABSTRACT
Recently, deep models have been successfully adopted in several

applications, especially where low-level representations are needed.

However, sparse, noisy samples and structured domains (with multi-

ple objects and interactions) are some of the open challenges inmost

deep models. Column Networks, a deep architecture, can succinctly

capture domain structure and interactions, but may still be prone

to sub-optimal learning from sparse and noisy samples. Inspired by

the success of human-knowledge guided learning in AI, especially

in data-scarce domains, we propose Knowledge-augmented Col-

umn Networks that leverage human advice/knowledge for better

learning with noisy/sparse samples. Our experiments demonstrate

that our approach leads to either superior overall performance or

faster convergence (i.e., both effective and efficient).

ACM Reference Format:
Mayukh Das, Devendra Singh Dhami, Yang Yu, Gautam Kunapuli, and Sri-

raamNatarajan. 2021. Human-Guided Learning of ColumnNetworks: Knowl-

edge Injection for Relational Deep Learning. In 8th ACM IKDD CODS and
26th COMAD (CODS COMAD 2021), January 2–4, 2021, Bangalore, India.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3430984.3431018

1 INTRODUCTION
The re-emergence of Deep Learning (Goodfellow et al., 2016) has

found significant and successful applications in complex real-world

tasks such as image (Krizhevsky et al., 2012), audio (Lee et al., 2009)

and video processing.However, the combinatorial complexity of rea-

soning in relational domains over a large number of relations and

objects has remained a significant bottleneck to overcome. Recent

work in relational deep learning has sought to address this partic-

ular challenge (França et al., 2014, Kaur et al., 2017, Kazemi and

Poole, 2018, Šourek et al., 2015). Column Networks, CLN, (Pham
et al., 2017), a deep architecture composed of several (feedforward)

interconnected mini-columns each of which represents an entity in

the domain, is a particularly promising approach for several reasons

- (1) hidden layers of a CLN share parameters, which restricts the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODS COMAD 2021, January 2–4, 2021, Bangalore, India
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8817-7/21/01. . . $15.00

https://doi.org/10.1145/3430984.3431018

parameter space from exploding with increasing depth, (2) as the

depth increases, the CLN can begin to model feature interactions

of considerable complexity and well as long range relational de-

pendencies and (3) learning and inference are linear in the size

of the network and the number of relations, which makes CLNs

highly efficient. In brief CLNs can fundamentally represent rela-

tional structure in an implicit fashion, unlike other graph-centric

deep models which learn numerical embeddings of relational struc-

tures. However, as our evaluation also illustrates, CLNs have not

overcome the necessity to rely on vast amounts of data for optimal

learning since it does not leverage any knowledge about the prob-

lem domain, similar to most deep architectures. This problem is

even more critical in structured domains since only a small fraction

of relationships are actually true rendering implicit sample sparsity.

It is well known that inductive bias is necessary for optimal

generalization over new instances (Mitchell, 1980). One of the fun-

damental forms of inductive bias comes from knowledge of the

target domain/task. While deep learning does incorporate domain

knowledge (for example, through parameter tying, convolutions,

attention mechanisms or denoising encoders) but they are limited

in their scope and treatment of such knowledge. We are motivated

to develop systems that can incorporate richer and more general

forms of domain knowledge. Human experts can guide learning

by providing rules over training examples and features. The earliest
such approaches combined explanation-based learning (EBL-NN,

(Shavlik and Towell, 1989)) or symbolic domain rules with ANNs

(KBANN, (Towell and Shavlik, 1994)). Another natural way a hu-

man could guide learning is by expressing preferences and has been

studied extensively within the preference-elicitation framework

due to Boutilier et al. (2006). We are inspired by this form of knowl-

edge as they have been successful within the context of inverse

reinforcement learning (Kunapuli et al., 2013), imitation learning

(Odom et al., 2015) and planning (Das et al., 2018).

These approaches span diverse machine learning formalisms,

and they all exhibit the same remarkable behavior: better general-
ization with fewer training examples because they effectively

exploit and incorporate domain knowledge as an inductive bias.

This is the prevailing motivation for our approach: to develop a

framework that allows a human to guide deep learning by in-

corporating rules and constraints that define the domain and its

aspects. Incorporation of prior knowledge into deep learning has

begun to receive interest recently, for instance, the recent work on

incorporating prior knowledge of color and scene information into

deep learning for image classification (Ding et al., 2018). However,

110

https://doi.org/10.1145/3430984.3431018
https://doi.org/10.1145/3430984.3431018

CODS COMAD 2021, January 2–4, 2021, Bangalore, India Das et al.

in many such approaches, the guidance is not through a human, but

rather through a pre-processing algorithm to generate guidance.

Our framework is much more general in that a human provides

guidance during learning. Furthermore, the human providing the

domain knowledge is not an AI/ML expert but rather a domain

expert who provides rules naturally. We exploit the rich repre-

sentation power of relational methods to capture, represent and

incorporate such rules into relational deep learning models. Note

that our focus is not combining logic and deep networks as several

others have explored this connection for decades since the origin of

neuro-symbolic reasoning to more recent ILP-based neural models

(Kaur et al., 2017, Kazemi and Poole, 2018) . We use first-order logic

as a representation language for human knowledge and employ it

in the context of CLNs.

We make the following contributions: (1) we propose the formal-

ism of Knowledge-augmented Column Networks, (2) we present,

inspired by previous work (such as KBANN), an approach to inject

generalized domain knowledge in a CLN and develop the learn-

ing strategy that exploits this knowledge, and (3) we demonstrate,

across four real problems in some of which CLNs have been previ-

ously employed, the effectiveness and efficiency of injecting domain

knowledge. Specifically, our results across the domains clearly show

statistically superior performance with small amounts of data. As

far as we are aware, this is the first work on human-guided CLNs.

2 BACKGROUND AND RELATEDWORK
Using domain knowledge as inductive bias to accelarate learning

has long been explored (Fung et al., 2003, Kunapuli et al., 2010, Le

et al., 2006a, Odom and Natarajan, 2018, Towell and Shavlik, 1994).

Fu et al., (1995) presents a unified view of different variations of

knowledge-based neural networks. Such knowledge based learn-

ing has been proposed for support vector machines (Fung et al.,

2003, Le et al., 2006b) in propositional cases and probabilistic logic

models (Odom and Natarajan, 2018) for relational cases. (Towell

and Shavlik, 1994) introduce the KBANN algorithm which com-

piles first order logic rules into a neural network and (Kunapuli

et al., 2010) present the first work on applying knowledge, in the

form of constraints, to the perceptron. The knowledge-based neural

network framework has been applied successfully to various real

world problems such as recognizing genes in DNA sequences (No-

ordewier et al., 1991), , robotic control (Handelman et al., 1990) and

recently in personalised learning systems (Melesko and Kurilovas,

2018). Combining relational (symbolic) and deep learning methods

has recently gained significant research thrust since relational ap-

proaches are indispensable in faithful and explainable modeling of

implicit domain structure, which is a major limitation in most deep

architectures in spite of their success. While extensive literature

exists that aim to combine the two (Battaglia et al., 2016, Lodhi,

2013, Rocktäschel et al., 2014, Sutskever et al., 2009), to the best of

our knowledge, there has been little or no work on incorporating

knowledge in any such framework.

Column networks transform relational structures into a deep

architecture in a principled manner and are designed especially for

collective classification tasks (Pham et al., 2017). The architecture

and formulation of the column network are suited for adapting it to

the advice framework. The GraphSAGE algorithm (Hamilton et al.,

2017) shares similarities with column networks since both architec-

tures operate by aggregating neighborhood information but differs

in the way the aggregation is performed. Graph convolutional net-

works (Kipf and Welling, 2016) is another architecture that is very

similar to the way CLN operates, again differing in the aggregation

method. Diligenti et al., (2017) presents a method of incorporating

constraints, as a regularization term, which are first order logic

statements with fuzzy semantics, in a neural model and can be

extended to collective classification problems. While it is similar in

spirit to our proposed approach it differs in its representation and

problem setup.

Several recent approaches aim to make deep architectures robust

to label noise by either learning from easy samples with importance

weights or by additional noise-adaptation layers or, may be, by

regularization over virtual adversarial randomization (Goldberger

and Ben-Reuven, 2017, Jiang et al., 2018, Miyato et al., 2018, Patrini

et al., 2017).

While the above approaches enable effective learning of deep

models in presence of noise, there are some fundamental differences

with our problem setting.

(1) [Type of noise]: We aim to handle systematic noise (Odom
and Natarajan, 2018) which is frequent in real-world due to

cognitive bias or sample sparsity.

(2) [Type of error]: Systematic noise leads to generalization

errors (see Example 1).

(3) [Structured data]: K-CLN works in the context of struc-

tured data (entities/relations). Though crucial, structured

data is inherently sparse (most relations are false in the real

world).

(4) [Noise prior]: Most noise handling approaches for deep

models explicitly try to model the noise, which is impossible

for systematic noise. K-CLN instead allows expert knowledge

to guide the learner towards better generalization via an

inductive bias.

Augmented learning with human knowledge has been proven to

be an effective strategy in machine learning, probabilistic learning

or sequential decision making, in presence of systematic noise (spar-

sity + sample bias + errors in data recording). Although, pseudo-

labels introduced by Lee, (2013) are used for constructing efficient

semi-supervised methods in deep learning, weak supervision is

not always successful as it assumes presence of large amounts of

data and certainly not the best approach with noisy data (since the

pseudo-lables are derived from the fully observed label set where

noise could propagate). Advice is typically provided before the data
set is encountered i.e., by a domain expert and hence is independent

of the fully labeled data (which can be noisy). Data programming

(Ratner et al., 2016) can be viewed as constraining the data using

weak labels and is orthogonal to our setting since which can be

regarded as constraining the model or hypotheses space.

3 KNOWLEDGE-AUGMENTED COLUMN
NETWORKS

3.1 Column Network: A brief background
Column Networks (Pham et al., 2017) allow for encoding interac-

tions/relations between entities as well as the attributes of such

111

Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning CODS COMAD 2021, January 2–4, 2021, Bangalore, India

entities in a principled manner without explicit relational feature

construction or vector embedding. This enables us to seamlessly

transform a multi-relational knowledge graph into a deep architec-

ture making them one of the robust relational deep models. Figure 1

illustrates an example column network, with respect to the knowl-

edge graph on the left. Note how each entity forms its own column

and relations are captured via the sparse inter-column connectors.

Consider a graph G = (V ,A), where V = {ei }
|V |
i=1 is the set of

vertices/entities. Without loss of generality, we assume only one

entity type. A is the set of arcs/edges between two entities ei and
ej denoted as r (ei , ej). Note that the graph is multi-relational, i.e.,
r ∈ R where R is the set of relation types in the domain. To obtain

the equivalent Column Network C from G, let xi be the feature
vector representing the attributes of an entity ei and yi its label
predicted by the model

1
. hti denotes a hidden node w.r.t. entity ei

at the hidden layer t (t = 1, . . . ,T is the index of the hidden layers).

The context between 2 consecutive layers captures the dependency

of the immediate neighborhood (based on edges/inter-column con-

nectors). For entity ei , the context w.r.t. r and hidden nodes are

computed as,

ctir =
1

|Nr (i)|

∑
j ∈Nr (i)

ht−1j ; (1)

hti = д

(
bt +W tht−1i +

1

z

∑
r ∈R

V t
r c

t
ir

)
(2)

where Nr (i) are all the neighbors of ei w.r.t. r in the knowledge

graph G. Note the absence of context connectors between ht
2
and

ht
4
(Figure 1, right) since there does not exist any relation between

e2 and e4 (Figure 1, left). The activation of the hidden nodes is

computed as the sum of the bias, theweighted output of the previous

hidden layer and the weighted contexts whereW t ∈ RK
t×K t−1

and V t
r ∈ RK

t×K t−1
are weight parameters and bt is a bias for

some activation function д. z is a pre-defined constant that controls
the parameterized contexts from growing too large for complex

relations. Setting z to the average number of neighbors of an entity

is a reasonable assumption. The final output layer is a softmax over

the pre-final layer, T , P(yi = ℓ |h
T
i) = so f tmax

(
bl +Wlh

T
i

)
where

ℓ ∈ L is the label (L is the set of labels).

3.2 Problem Setting
For a clearer perspective of the problem we aim to address, let us

consider the following example,

Example 1. Wewish to classify whether a published article is about
carcinoid metastasis (Zuetenhorst and Taal, 2005) or is irrelevant, from
a citation network, and textual features of articles. There are several
challenges: (1) Data is implicitly sparse due to rarity of clinical studies,
(2) Some articles may cite other articles about carcinoid and contain
some textual features, but may actually address another topic and (3)
Finally, the presence of systematic noise, introduced by the citation
parser or uninformative abstracts.

The above cases may lead to the model not being able to effec-

tively capture certain dependencies, or converge slower, even if they

1
Note that since in our formulation every entity is uniquely indexed by i , we use ei
and i interchangeably

are captured somewhere in the advanced layers of the deep network.

Our approach attempts to alleviate this problem via augmented

learning of Column Networks using human advice/knowledge. We

formally define our problem in the following manner,

Given: A sparse multi-relational graph G, attributes xi of each
entity (sparse or noisy) in G, equivalent Column-Network C and

access to a Human-expert

To Do: More effective and efficient collective classification

by knowledge augmented training of C(θ), where θ =

⟨{W t }T
1
, {V t

r }
t=T
r ∈R;t=1, {Wℓ}ℓ∈L⟩ is the set of all the network pa-

rameters of C.

We developKnowledge-augmentedCoLumnNetworks (K-CLN),

that incorporates human-knowledge, for more effective and effi-

cient learning from relational data (Figure 2 illustrates the overall

architecture). While knowledge-based connectionist models are not

entirely new, our formulation provides - (1) a principled approach

for incorporating knowledge specified in an intuitive logic-based

encoding/language (2) a deep model for collective classification in

relational data.

3.3 Knowledge Representation
Any model specific encoding of domain knowledge, such as nu-

meric constraints or modified loss functions etc., has limitations,

namely (1) counter-intuitive to the humans since they are domain

expert (2) the resulting framework is brittle and not generalizable.

Consequently, we employ preferences (akin to IF-THEN statements)

to capture human knowledge.

Definition 1. A preference is a modified Horn clause,
∧k,xAttrk(Ex) ∧ . . . ∧r∈R,x,y r(Ex, Ey) ⇒ [label(Ez, ℓ1) ↑;
label(Ek, ℓ2) ↓] where ℓ1, ℓ2 ∈ L and the Ex are variables over enti-
ties, Attrk(Ex) are attributes of Ex and r is a relation. ↑ and ↓ indicate
the preferred non-preferred labels respectively. Quantification is im-
plicitly ∀ and hence dropped. We denote a set of preference rules as
P.

Note that we can always, either have just the preferred label in

head of the clause and assume all others as non-preferred, or assume

the entire expression as a single literal. Intuitively a rule can be

interpreted as conditional rule, IF [conditions hold] THEN label
ℓ is preferred. A preference rule can be partially instantiated as

well, i.e., or more of the variables may be substituted with constants.

Example 2. For the prediction task mentioned in Example 1, a
possible preference rule could be,

hasWord(E1, “AI”) ∧ hasWord(E2, “domain”)∧

cites(E2, E1) ⇒ label(E2, “irrelevant”) ↑

Intuitively, this rule denotes that an article is not a relevant clinical
work to carcinoid metastasis if it cites an ‘AI’ article and contains
the word “domain", since it is likely to be another AI article that uses
carcinoid metastatis as an evaluation domain.

3.4 Knowledge Injection
Given that knowledge is provided as partially-instantiated prefer-

ence rules P, more than one entity may satisfy a preference rule.

Also, more than one preference rules may be applicable for a single

112

CODS COMAD 2021, January 2–4, 2021, Bangalore, India Das et al.

Figure 1: Original Column network [diagram src: (Pham et al., 2017)] Figure 2: K-CLN architecture

entity. The main intuition is that we aim to consider the error of

the trained model w.r.t. both the data and the advice. Consequently,

in addition to the “data gradient" as with original CLNs, there is

a “advice gradient”. This gradient acts a feedback to augment the

learned weight parameters (both column and context weights) to-

wards the direction of the advice gradient. It must be mentioned

that not all parameters will be augmented. Only the parameters

w.r.t. the entities and relations (contexts) that satisfy P should be

affected. Let P be the set of entities and relations that satisfy the

set of preference rules P. The hidden nodes (equation 1) can now

be expressed as,

hti = д

(
bt +W tht−1i Γ

(W)
i +

1

z

∑
r ∈R

V t
r c

t
ir Γ
(c)
ir

)
s.t. Γi , Γi,r =

{
1 if i, r < P

F (α∇Pi) if i, r ∈ P
(3)

where i ∈ P and Γ
(W)
i and Γ

(c)
ir are advice-based soft gates with

respect to a hidden node and its context respectively. F () is some

gating function, ∇
P

i is the “advice gradient” and α is the trade-off

parameter explained later. The key aspect of soft gates is that they

attempt to enhance or decrease the contribution of particular edges

in the column network aligned with the direction of the “advice
gradient”. We choose the gating function F () as an exponential

[F (α∇Pi) = exp (α∇Pi)]. The intuition is that soft gates are natural,

as they are multiplicative and a positive gradient will result in

exp (α∇Pi) > 1 increasing the value/contribution of the respective

term, while a negative gradient results in exp (α∇Pi) < 1 pushing

them down. We now present the “advice gradient” (the gradient

with respect to preferred labels).

Proposition 1. Under the assumption that the loss function with
respect to advice / preferred labels is a log-likelihood, of the formLP =
log P(y

(P)

i |h
T
i), then the advice gradient is, ∇Pi = I (y

(P)

i) − P(yi),

where y(P)i is the preferred label of entity and i ∈ P and I is an
indicator function over the preferred label. For binary classification,
the indicator is inconsequential but for multi-class scenarios it is
essential (I = 1 for preferred label ℓ and I = 0 for L \ ℓ).

Since an entity can satisfy multiple advice rules we take themost
preferred label, i.e., we take the label y

(P)

i = ℓ to the preferred

label if ℓ is given by most of the advice rules that ej satisfies. In
case of conflicting advice (i.e. different labels are equally advised),

we simply set the advice label to be the label given by the data,

y
(P)

i = yi (Proof in supplementary appendix). As illustrated in

the K-CLN architecture (Figure 2), at the end of every epoch of

training the advice gradients are computed and soft gates are used

to augment the value of the hidden units (Equation 3).

Proof for Proposition 1 Most advice based learning methods

formulate the effect of advice as a constraint on the parameters or

a regularization term on the loss function. We consider a regular-

ization term based on the advice loss L(P) = log P(yi = y
(P)

i |h
T
i)

and we know that P(yi |h
T
i) = softmax(bℓ +Wℓh

T
i). We consider

bℓ +Wℓh
T
i = Ψ(yi ,hTi)

in its functional form following prior non-

parametric boosting approaches (Odom et al., 2015). Thus P(yi =

y
(P)

i |h
T
i) = exp (Ψ

(y (P)i ,hTi)
)/

∑
y′∈L exp (Ψ(y′,hTi)

). A functional gra-

dient w.r.t. Ψ of L(P) yields,

∇
P

i =
∂ log P(yi = y

(P)

i |h
T
i)

∂Ψ
(y (P)i ,hTi)

= I (y
(P)

i) − P(yi) (4)

Alternatively, assuming a squared loss such as (y
(P)

i − P(yi))
2
,

would result in an advice gradient of the form 2(y
(P)

i − P(yi))(1 −
P(yi))P(yi). We observe that in a functional form the advice gra-

dient is the difference between the true label distribution and the
predicted distribution (or some function of that difference), irrespec-
tive of the the type of loss we choose to optimize. As illustrated in

the K-CLN architecture (in main paper), at the end of every epoch

of training the advice gradients are computed and soft gates are

used to augment the value of the hidden units as shown in the main

section,

Γi , Γi,r =

{
1 if i, r < P

F (α∇Pi) if i, r ∈ P

Proposition 2. Given that the loss functionHi of original CLN is
cross-entropy (binary or sparse-categorical for the binary and multi-
class prediction cases respectively) and the objective w.r.t. advice is
log-likelihood, the functional gradient of the modified objective is,

∇(H ′i) = (1 − α)
(
yi I − P(yi |h

T)
)
+ α

(
IPi − P(y

P

i |h
T)

)
= (1 − α)∇i + α∇

P

i (5)

where 0 ≤ α ≤ 1 is the trade-off parameter between the effect of
data and effect of advice, Ii and I

P

i are the indicator functions on the

label w.r.t. the data and the advice respectively and ∇i and ∇
P

i are
the gradients, similarly, w.r.t. data and advice respectively.

113

Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning CODS COMAD 2021, January 2–4, 2021, Bangalore, India

Proof for Proposition 2: The original objective function (w.r.t. data)
of CLNs is cross-entropy. For clarity, let us consider the binary

prediction case, where the objective function is now a binary cross-

entropy of the form,H = − 1

N
∑N
i=1 yi log(P(yi)) + (1 − yi) log(1 −

P(yi)).
Ignoring the summation for brevity, for every entity i , Hi =

yi log(P(yi)) + (1 − yi)loд(1 − P(yi)). Extension to the multi-label

prediction case with a sparse categorical cross-entropy is straight-

forward and is an algebraic manipulation task. Now, from Propo-

sition 1, the loss function w.r.t. advice is the log likelihood of the

form, LP = log P(yPi |h
T). Thus the modified objective is,

H ′i =(1 − α) [yi log (P(yi)) + (1 − yi) log (1 − P(yi))]

+ α log(P(yPi)) (6)

where α is the trade-off parameter. P(y) = P(y |hT) can be im-

plicitly understood. Now we know from Proposition 1 that the

distributions, P(yi) and P(y
P

i), can be expressed in their functional

forms, given that the activation function of the output layer is

a softmax, as P(yi) = exp (Ψ(yi ,hTi)
)/

∑
y′∈L exp (Ψ(y′,hTi)

). Taking

the functional (partial) gradients (w.r.t. Ψ(yi ,hTi)
and Ψ

(yPi ,h
T
i)
) of

the modified objective function (Equation 6), followed by some

algebraic manipulation we get,

∇(H ′i) =(1 − α)[yi Ii − yiP(yi) − P(xi) + yiP(yi)] + α(I
P

i − P(y
P

i))

=(1 − α) (yi I − P(yi)) + α
(
IPi − P(y

P

i)
)

Hence, it follows from Proposition 2 that the data and the ad-

vice balances the training of the K-CLN network parameters θP

via the trade-off hyperparameter α . When data is noisy (or sparse

with negligible examples for a region of the parameter space) the

advice/knowledge (if correct) induces a bias on the output distribu-

tion towards the correct label. Even if the advice is incorrect, the

network still tries to learn the correct distribution to some extent

from the data (if not noisy). The contribution of the effect of data vs

effect of advice will primarily depend on α . If both data and human

advice are sub-optimal, correct label distribution is not learnable.

3.5 The Algorithm
Algorithm 1 outlines all the key steps. Kcln(), the main procedure

[lines: 1-14], trains a Column Network using both the data (the

knowledge graph G) and the human advice (set of preference rules

P). It returns a K-CLN CP where θP are the network parameters,

which are initialized to any arbitrary value (0 in our case; [line:
3]). Our gating functions are piece-wise/non-smooth and apply

only to the subspace entities, features and relations that satisfy

the preference rules. So, as a pre-processing step, we create tensor

masks that compactly encode such a subspace via the procedure

CreateMask() [line: 4].
The network CP(θP) is then trained through multiple epochs

till convergence [lines: 6-12]. At the end of every epoch the output

probabilities and the gradients are computed and stored in a shared

data structure [line: 11] to be accessed in the next epoch. Train-

ing is largely similar to original CLN with two key modifications
[line: 9] - (1) Equation 3 is the modified expression for hidden

units. (2) The data trade-off 1 − α augments the original loss and

Algorithm 1 K-CLN: Knowledge-augmented CoLumn Networks

1: procedure KCLN(Knowledge graph G, Column network C(θ), Advice
P, Trade-off α)

2: K-CLN CP(θP) ← C(θ) ▷ modified hidden units Eqn 3

3: Initialize θP ← {0} ▷ initialize parameters of K-CLN

4: MP = ⟨MW ,Mc ,Mlabel ⟩ ← CreateMask(G, P)

▷ mask ∀ entities/relations/labels ∈ P

5: Initial gradients ∀i ∇Pi,0 = 0; i ∈ P
6: for epochs k=1 to convergence do

▷ convergence criteria same as original CLN

7: Get advice gradients ∇
P

i, (k−1) for prev. epoch k − 1

8: Gates ΓPi , Γ
P

i,r ← exp (α∇Pi × M
P
i)

9: Train CP using Equation 3; Update θP

10: Compute ∀i P (yi) from CP ▷ for current epoch k
11: Store ∀i ∇Pi,k ← I (y(P)i) − P (yi)

▷ Obtain I (y(P)i) ⇐ M
label

12: end for
13: return K-CLN CP

14: end procedure

15: procedure CreateMask(Knowledge graph G,Advice P)

16: MW [D × |O |] ← ∅
▷ D : feature length; |O |: # entities where G = (O, R)

17: Mc [|O | × |O |] ← ∅;Mlabel [|O | × L] ← ∅
▷ MW

: entity;Mc
: context &Mlabel

: label mask

18: for each preference p ∈ P do
19: if ∀i ∈ O ∧ ∀r ∈ R : i and r satisfies p then
20: MW [x, i] ← 1 ▷ x is the feature affected by p
21: Mc [i, j] ← 1 ▷ r = ⟨i, j ⟩ ∈ R; j , i ; j ∈ O
22: Mlabel [i, ℓ] ← 1; s.t. LabelOf(i |p) = ℓ

23: end if
24: end for
25: return ⟨MW ,Mc ,Mlabel ⟩

26: end procedure

the advice trade-off α , is used to compute the gates. Procedure

CreateMask() [lines: 15-27] constructs the tensor mask(s) over

the space of entities, features and relations/contexts that are re-

quired to compute the gates (as seen in line: 8). There are 3 key
components of the advice mask. They are - (1) Entity maskMW

(#entities × #features), indicates entities and relevant features are

affected by the advice, (2) Context maskMc
(#entities × #entities),

indicates the contexts that are affected (relations are directed, so

it is asymmetric), (3) Label maskMlabel
, indicates the preferred

label of the affected entities, in a one-hot encoding. The masks

are iteratively computed for every preference [lines: 19-25]. This
includes satisfiability checking, p ∈ P [line: 20], which is achieved

via subgraph matching on the knowledge graph G (preference rule

≡ subgraph template) ((Das et al., 2019, 2016)). The components

MW
andMc

are used in gate computation in main procedure and

Mlabel
is used for the indicator IPi in the advice gradient.

4 EXPERIMENTS
We investigate the following questions via our evaluation,

(1) Can K-CLNs learn efficiently with noisy sparse samples i.e.,

performance?

114

CODS COMAD 2021, January 2–4, 2021, Bangalore, India Das et al.

Figure 3: Performance w.r.t. epochs. Macro/Micro-F1 for multi-class problems and F1/AUC for binary class.

(2) Can K-CLNs learn effectively with noisy sparse samples i.e.,

speed of learning?

(3) How does quality of advice affect the performance of K-CLN

i.e., reliance on robust advice?

We compare against the original Column Networks architecture

with no advice (Vanilla CLN indicates the original Column Network
architecture (Pham et al., 2017)) as a baseline. Our intention is to

show how advice/knowledge can guide model learning towards

better predictive performance and efficiency, in the context of col-

lective classification using Column Networks. Also, our problem

setting is distinct from most existing noise robust deep learning

approaches. Thus, we restrict our comparisons to the original work.

System: K-CLN extends original CLN architecture, which uses

Keras as the functional deep learning API with a Theano backend for
tensor manipulation. We extend this system to include: (1) advice

gradient feedback at the end of every epoch, (2) modified hidden

layer computations and (3) a pre-processing wrapper to parse the

advice/preference rules and create appropriate tensor masks. Since

it is not straightforward to access final layer output probabilities

from inside any hidden layer using keras, we use Callbacks to
write/update the predicted probabilities to a shared data structure

at the end of every epoch. This data structure is then fed via inputs

to the hidden layers. Each mini-column with respect to an entity

is a dense network of 10 hidden layers with 40 hidden nodes in

each layer (similar to the most effective settings outlined in (Pham

et al., 2017)). The advice masks encode P, i.e., the set of entities and
contexts where the gates are applicable (Algorithm 1).

Domains #Entities #Relations #Features Target type
Pubmed 19717 44, 338 500 Multi-class

Corporate 3119 ∼ 1, 000, 000 750 Multi-class

Debates 6662 ∼ 25000 500 Binary

Disaster 8000 35000 504 Binary

Table 1: Evaluation domains and their properties

Domains: We evaluate our approach on four relational do-
mains – Pubmed Diabetes and Corporate Messages, (multi-class),

and Internet Social Debates and Social Network Disaster Relevance
(binary). Pubmed Diabetes2 is a citation network for predicting

whether a peer-reviewed article is about Diabetes Type 1, Type 2 or
none, using textual features (TF-IDF vectors) from 19717 pubmed

abstracts and 44, 338 citation relationships among them. Here arti-

cles are entities with 500 bag-of-words features (TF-IDF word vec-

tors). Internet Social Debates3 is for predicting stance (‘for’/‘against’)
about a debate topic from online posts on social debates. It contains

6662 posts (entities) characterized by TF-IDF vectors and ∼ 25000

relations of 2 types, ‘sameAuthor’ and ‘sameThread’. Corporate
Messages4 is an intention prediction data set of 3119 flier messages

sent by corporate groups in the finance domain, with 1, 000, 000

sameSourceGroup relations. We predict the intention of the message

(Information, Action or Dialogue). Finally, Social Network Disaster
Relevance is a relevance prediction data set of 8000 Twitter posts,

2
https://linqs.soe.ucsc.edu/data

3
http://nldslab.soe.ucsc.edu/iac/v2/

4
https://www.figure-eight.com/data-for-everyone/

115

https://linqs.soe.ucsc.edu/data
http://nldslab.soe.ucsc.edu/iac/v2/
https://www.figure-eight.com/data-for-everyone/

Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning CODS COMAD 2021, January 2–4, 2021, Bangalore, India

Figure 4: Performance w.r.t. varying samples. Sample size is varied from 3% to 48% of total.

curated and annotated by crowd with relevance scores. Besides

textual ones, we use score features and 35k relations among tweets

(of types ‘same author’ and ‘same location’). Table 1 outlines the
important aspects of the 4 domains.

Metrics: Following (Pham et al., 2017), we report macro-F1 and

micro-F1 scores for the multi-class problems, and F1 scores and

AUC-PR for the binary ones. Macro-F1 computes the F1 score inde-

pendently for each class and takes the average whereas a micro-F1

aggregates the contributions of all classes to compute the average

F1 score. Due to space limitation, we show only the Micro-F1 and

the AUC-PR results (complete set of plots - in supplementary appen-
dix). For all experiments we use 10 hidden layers and 40 hidden

units per column in each layer. All results are averaged over 5 runs.

Human Advice: K-CLN is designed to handle arbitrarily com-

plex expert advice encoded as preference rules. However, even with

some relatively simple preference rules K-CLN is more effective

in sparse samples. Eg: In Pubmed, the most complex preference rule
is, HasWord(e1, ‘fat′) ∧ HasWord(e1, ‘obese

′) ∧ Cites(e2, e1) ⇒
[label(e2, type2) ↑]. Note how a simple rule, indicating an article

citing another one discussing obesity is likely to be about Type2

diabetes, proved to be effective. Knowledge from real physicians

can thus, be extremely effective. In Disaster Relevance even advice

rules without domain expertise, such as a tweet is likely to be NOT
about disaster, if posted by the same user who usually posts non-
disaster tweets. Advice rules for experiments in other domains are

designed in a similar fashion as well, i.e. via simple inspection and

understanding of the domains. Another notable aspect is that, sub-

optimal advice may lead to a wrong direction of the Advice Gradient.

However, our soft gates do not alter the loss, but instead are akin

to attention mechanisms that promote/demote the contribution of

nodes/contexts. The trade-off parameter α balances the effect of

advice and data during training.

4.1 Results
Efficiency (Q1):Wepresent the aforementionedmetrics with vary-
ing sample size and with increasing epochs and compare our

model against Vanilla CLN. We split the data sets into a training

set and a hold-out test set with 60%-40% ratio. For varying epochs

we only learn on 40% of our pre-split training set (i.e., 24% of the

complete data) to train the model and test on the hold-out test set.

Figure 3 shows that, although both K-CLN and Vanilla CLN con-

verge to the same predictive performance (Micro-F1 for PubMed

& Corporate and AUC-PR for the rest), K-CLN converges signifi-
cantly faster (less epochs). Also. for the corporate and the debate, K-
CLN not only converges faster but also has a better predictive
performance than Vanilla CLN (Figure 3). We have similar obser-

vations in Macro-F1 results (see appendix) These results show that

K-CLNs learn more efficiently with noisy sparse samples thereby

answering (Q1) affirmatively.

Effectiveness (Q2): The intuition is, domain knowledge should
guide the model to learn better when the training data is sparse. Thus
they are trained on gradually varying sample sizes from 5% of

the training data (3% of the complete data) till 80% of the training

data (48% of complete data) and tested on the hold-out test set.

Figure 4 presents the performance results with varying sample

sizes for all data sets. K-CLN outperforms Vanilla CLN across all

116

CODS COMAD 2021, January 2–4, 2021, Bangalore, India Das et al.

Figure 5: Bad+alpha: Performance, F1 (Left) & AUC-PR (Right) on
Debates w/ varying samples & w/ varying trade-off parameter α . Ad-
vice here is incorrect/sub-optimal. α = 0 has same as Vanilla CLN.

Figure 6: Good+#Advice: Performance, F1 (Left) & AUC-PR
(Right) onDebatesw/ varying sample& # good advice rules. #Adv = 0

same as vanilla CLN. #Adv = 6 same as KCLN (Fig 3 & 4)

sample sizes, on both metrics, which suggests that the advice is

relevant throughout the training phase with varying sample sizes.

For Corporate Messages, K-CLN outperforms with small number of

samples, gradually converging to a similar prediction performance

with larger samples. However, we have observed that, for Macro-

F1, the performance is similar for both, although K-CLN performs

better with very small samples. This could happen, in multi-class

prediction, when the advice may not apply to some of the classes,

while applying to the rest, effectively averaging out in Macro-F1.

Thus K-CLN outperforms CLN, with noisy sparse samples (Q2).
Robustness (Q3): An obvious question is – how robust is our

learning system to that of noisy/incorrect advice? Conversely, how
does the choice of α affect the quality of the learned model? To an-

swer these, we consider the Internet Social Debates domain by

augmenting the learner with incorrect advice. The incorrect advice

is created by changing the preferred label of the advice rules to

known incorrect values. The contribution of advice is dependent on

the trade-off parameter α , which controls the robustness of K-CLN

to advice quality. Hence, we experimented with different values

of α (0.2, 0.4, . . . , 1.0), across varying sample sizes. Figure 5 shows

how with higher α values the performance deteriorates due to the

effect of noisy advice. α = 0 is equivalent to no-advice/Vanilla CLN.

Note, with reasonably low values of α = 0.2, 0.4, the performance

does not deteriorate and α K-CLN is robust to quality of advice

(Q3). Similar behavior was observed in all domains.

5 DISCUSSION
It is difficult to quantify correctness or quality of human advice

unless absolute ground truth is accessible in some manner. We

evaluate on sparse samples of real data sets with no availability of

gold standard labels. We have provided the most relevant/useful

advice in the experiments aimed at answering (Q1) and (Q2) as

indicated in the experimental setup. We emulate noisy advice (for

Q3) by flipping/altering the preferred labels of the original advice

rules. We have shown theoretically (Prop. 1 & 2) that the robustness

of K-CLN depends on the advice trade-off parameter α that controls

the contribution of the data versus the advice towards effective

training.We postulate that even in presence of noisy advice, the data

(if not noisy) is expected to contribute towards effective learning

with a weight of (1 − α). Of course, if both the data and advice are

noisy the concept is not learnable (as with any algorithm).

The experiments w.r.t. Q3 (Figure 5) empirically support our

theoretical analysis. We found that when α ≤ 0.5, K-CLN performs

well even with noisy advice. Also, note that the drop in perfor-

mance towards very low sample sizes (in Figure 5) highlights how

learning is challenging in the noisy-data and noisy-advice scenario

and aligns with our general understanding of most human-in-the-

loop/advice-based approaches in AI. Trade-off between data and

advice via a weighted combination of both is a well studied solution

(Odom and Natarajan, 2018) and, hence, we adapt the same.

Figure 6 illustrates the effect of amount advice (on Debates) when

advice is optimal. Note, earlier experiments (Fig 3 & 4) were done

with 6 advice rules. Although, increasing # rules beyond 6 helps in

low sample sizes, the difference is not significant since the most

important rules were given first.

6 CONCLUSION
We considered the problem of providing guidance for CLNs. Specif-

ically, we assume that the advice givers as true domain experts

and not CLN experts and we developed a formulation based on

preferences. This formulation allowed for natural specification of

guidance.We derived the gradients based on advice and outlined the

integration with the original CLN formulation. Our experimental

results across different domains clearly demonstrate the effective-

ness and efficiency of the approach, specifically in knowledge-rich,

data-scarce problems. Tracking the expertise of humans to infer ad-

vice quality and leveraging other types of advice including feature

importance, qualitative constraints, privileged information, etc. are

potentially interesting future directions. Scaling our approach to

web-scale data and extending the idea to other deep models remain

interesting avenues for future research.

ACKNOWLEDGMENTS
MD, GK & SN gratefully acknowledge the support of CwC Program

Contract W911NF-15- 1-0461 with the US Defense Advanced Re-

search Projects Agency (DARPA) and the Army Research Office

(ARO). DSD acknowledges the National Institute of Health (NIH)

grant no. R01 GM097628. Any opinions, findings and conclusion or

recommendations are those of the authors and do not necessarily

reflect the view of the DARPA, ARO or the US government.

117

Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning CODS COMAD 2021, January 2–4, 2021, Bangalore, India

REFERENCES
Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. 2016.

Interaction networks for learning about objects, relations and physics. In NIPS.
Darius Braziunas and Craig Boutilier. 2006. Preference elicitation and generalized

additive utility. In AAAI.
Mayukh Das, Devendra Singh Dhami, Gautam Kunapuli, Kristian Rao Kersting, and

Sriraam Natarajan. 2019. Fast Relational Probabilistic Inference and Learning:

Approximate Counting via Hypergraphs. In AAAI.
Mayukh Das, Phillip Odom, Md. Rakibul Islam, Janardhan Rao Doppa, Dan Roth,

and Sriraam Natarajan. 2018. Preference-Guided Planning: An Active Elicitation

Approach. In AAMAS.
Mayukh Das, Yuqing Wu, Tushar Khot, Kristian Kersting, and Sriraam Natarajan. 2016.

Scaling Lifted Probabilistic Inference and Learning Via Graph Databases. In SDM.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca. 2017. Semantic-based regular-

ization for learning and inference. AIJ (2017).
Xintao Ding, Yonglong Luo, Qingde Li, Yongqiang Cheng, Guorong Cai, Robert

Munnoch, Dongfei Xue, Qingying Yu, Xiaoyao Zheng, and Bing Wang. 2018. Prior

knowledge-based deep learning method for indoor object recognition and applica-

tion. Systems Science & Control Engineering (2018).

M. V. M. França, G. Zaverucha, and A. S. d’Avila Garcez. 2014. Fast relational learning

using bottom clause propositionalization with artificial neural networks. MLJ
(2014).

LiMin Fu. 1995. Introduction to knowledge-based neural networks. Knowledge-Based
Systems (1995).

Glenn M Fung, Olvi L Mangasarian, and Jude W Shavlik. 2003. Knowledge-based

support vector machine classifiers. In Advances in neural information processing
systems.

Jacob Goldberger and Ehud Ben-Reuven. 2017. Training deep neural-networks using a

noise adaptation layer. In ICLR.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The MIT

Press.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning

on large graphs. In NIPS.
DA Handelman, Stephen H Lane, and Jack J Gelfand. 1990. Integrating neural networks

and knowledge-based systems for intelligent robotic control. IEEE Control Systems
Magazine (1990).

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentornet:

Learning data-driven curriculum for very deep neural networks on corrupted labels.

In ICML.
Navdeep Kaur, Gautam Kunapuli, Tushar Khot, Kristian Kersting, William Cohen, and

Sriraam Natarajan. 2017. Relational Restricted Boltzmann Machines: A Probabilistic

Logic Learning Approach. In ILP.
Seyed Mehran Kazemi and David Poole. 2018. RelNN: A Deep Neural Model for

Relational Learning. In AAAI.
Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification

with deep convolutional neural networks. In NIPS.
Gautam Kunapuli, Kristin P Bennett, Richard Maclin, and Jude W Shavlik. 2010. The

adviceptron: Giving advice to the perceptron. In ANNIE.
Gautam Kunapuli, Phillip Odom, JudeW Shavlik, and SriraamNatarajan. 2013. Guiding

autonomous agents to better behaviors through human advice. In ICDM.

Quoc V Le, Alex J Smola, and Thomas Gärtner. 2006a. Simpler knowledge-based

support vector machines. In ICML.
Quoc V Le, Alex J Smola, and Thomas Gärtner. 2006b. Simpler knowledge-based

support vector machines. In Proceedings of the 23rd international conference on
machine learning.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-supervised learning

method for deep neural networks. In Workshop on Challenges in Representation
Learning, ICML.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng. 2009. Unsupervised

feature learning for audio classification using convolutional deep belief networks.

In NIPS.
Huma Lodhi. 2013. Deep relational machines. In ICONIP.
Jaroslav Melesko and Eugenijus Kurilovas. 2018. Semantic Technologies in e-Learning:

Learning Analytics and Artificial Neural Networks in Personalised Learning Sys-

tems. In Proceedings of the 8th International Conference on Web Intelligence, Mining
and Semantics.

Tom M Mitchell. 1980. The need for biases in learning generalizations. Department of

Computer Science, Laboratory for Computer Science Research, Rutgers Univ. New

Jersey.

Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. 2018. Virtual

adversarial training: a regularization method for supervised and semi-supervised

learning. TPAMI (2018).
Michiel O Noordewier, Geoffrey G Towell, and Jude W Shavlik. 1991. Training

knowledge-based neural networks to recognize genes in DNA sequences. In Ad-
vances in neural information processing systems.

P. Odom, T. Khot, R. Porter, and S. Natarajan. 2015. Knowledge-Based Probabilistic

Logic Learning. In AAAI.
Phillip Odom and Sriraam Natarajan. 2018. Human-Guided Learning for Probabilistic

Logic Models. Frontiers in Robotics and AI, section Computational Intelligence (2018).
Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen

Qu. 2017. Making deep neural networks robust to label noise: A loss correction

approach. In CVPR.
Trang Pham, Truyen Tran, Dinh Q Phung, and Svetha Venkatesh. 2017. Column

Networks for Collective Classification.. In AAAI.
Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré.

2016. Data programming: Creating large training sets, quickly. In NIPS.
Tim Rocktäschel, Matko Bošnjak, Sameer Singh, and Sebastian Riedel. 2014. Low-

dimensional embeddings of logic. In ACL 2014 Workshop on Semantic Parsing.
Jude W Shavlik and Geoffrey G Towell. 1989. Combining explanation-based learning

and artificial neural networks. In Proceedings of the sixth international workshop on
Machine learning. Elsevier.

Ilya Sutskever, Joshua B Tenenbaum, and Ruslan R Salakhutdinov. 2009. Modelling

relational data using bayesian clustered tensor factorization. In NIPS.
Geoffrey G Towell and Jude W Shavlik. 1994. Knowledge-based artificial neural

networks. Artificial intelligence (1994).
Gustav Šourek, Vojtech Aschenbrenner, Filip Železny, and Ondřej Kuželka. 2015. Lifted

Relational Neural Networks. In NIPS Workshop on Cognitive Comput.: Integr. Neural
& Symbolic Approaches.

Johanna M Zuetenhorst and Babs G Taal. 2005. Metastatic carcinoid tumors: a clinical

review. The Oncologist (2005).

118

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Knowledge-augmented Column Networks
	3.1 Column Network: A brief background
	3.2 Problem Setting
	3.3 Knowledge Representation
	3.4 Knowledge Injection
	3.5 The Algorithm

	4 Experiments
	4.1 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

