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Abstract

The probabilities of causation are commonly used to solve decision-making prob-
lems. Tian and Pearl derived sharp bounds for the probability of necessity and
sufficiency (PNS), the probability of sufficiency (PS), and the probability of neces-
sity (PN) using experimental and observational data. The assumption is that one
is in possession of a large enough sample to permit an accurate estimation of the
experimental and observational distributions. In this study, we present a method for
determining the sample size needed for such estimation, when a given confidence
interval (CI) is specified. We further show by simulation that the proposed sample
size delivered stable estimations of the bounds of PNS.

1 Introduction

The probabilities of causation are widely used in many areas of industry, marketing, and health
science, to solve decision-making problems. For example, Li and Pearl [6, 8] proposed the “benefit
function”, a linear combination of the probabilities of causation, which is the payoff/cost associated
with selecting an individual with given characteristics to identify a set of individuals who are most
likely to exhibit a desired mode of behavior. Mueller and Pearl [11] demonstrated, for example, that
the probabilities of causation should be considered in personalized decision-making. Li et al. [7]
showed that the probabilities of causation can improve the accuracy of machine learning algorithms.

Pearl [14] first used the structural causal model (SCM) to defined three binary probabilities of
causation (i.e., PNS, PN, and PS) [3, 4, 15]. Tian and Pearl [16] then used experimental and
observational data to bound those three probabilities of causation. Li and Pearl [8, 10] established
formal proof of those bounds. Mueller, Li, and Pearl [12] proposed narrowing the bounds of PNS
using covariate information and the causal structure. Dawid et al. [2] also proposed using covariate
information to narrow the bounds of PN. Li and Pearl [5] recently established the theoretical bounds
of nonbinary probabilities of causation.

All the abovementioned works are asymptotic (i.e., assuming a adequately large sample size to
estimate the experimental and observational distributions). The proposed results in those works
are relationships between the experimental and observational distributions and the probabilities of
causation. However, the adequate sample size for obtaining those probabilities of causation remains
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unclear, thereby creating a barrier between the theoretical results and the real-world applications.
Consider the following motivating example: a mobile carrier that wants to identify customers who
are likely to discontinue their services within the next quarter based on customer characteristics
(company management has access to user data, such as income, age, usage, and monthly payments).
The carrier will then offer these customers a special renewal deal to dissuade them from discontinuing
their services and to increase their service renewal rate. These offers provide considerable discounts
to the customers, and the management prefers that these offers be made only to those customers who
would continue to use the service if and only if they receive the offer. The manager decides to use Li
and Pearl’s unit selection model [8] but is unsure how many experimental and observational samples
are required. Are 1000 experimental and 1000 observational samples adequate to bound the benefit
function such that the error of the bounds are within 0.1?

We present an assessment of the “adequate" of the sample size in the sense of CI in this study.
We would then be able to answer the question, “How many samples are adequate to estimate the
probability of causation?" as “This amount of samples is adequate to obtain the bounds of the
probability of causation in 95% CIs with margin of errors of 0.05." The probabilities of causation in
most cases are not identifiable; therefore, the CIs are for the bounds of the probabilities of causation
in such cases.

2 Preliminaries

We review the definitions for the three aspects of binary causation in this section, as defined in [14].
We use the language of counterfactuals in SCM, as defined in [3, 4]. We use Yx = y to denote the
counterfactual sentence “Variable Y would have the value y, had X been x". For the rest of the
paper, we use yx to denote the event Yx = y, yx′ to denote the event Yx′ = y, y′x to denote the
event Yx = y′, and y′x′ to denote the event Yx′ = y′. We assume that experimental distribution will
be summarized in the form of the causal effects such as P (yx) and observational distribution will
be summarized in the form of the joint probability function such as P (x, y). If neither variable is
specified, variable X represents treatment and variable Y represents effect.

The following are three prominent probabilities of causation:

Definition 1 (Probability of necessity (PN)). Let X and Y be two binary variables in a causal model
M , let x and y stand for the propositions X = true and Y = true, respectively, and x′ and y′ for
their complements. The probability of necessity is defined as the expression [14]

PN =∆ P (Yx′ = false|X = true, Y = true) =∆ P (y′x′ |x, y)

Definition 2 (Probability of sufficiency (PS)). [14]

PS =∆ P (yx|y′, x′)

Definition 3 (Probability of necessity and sufficiency (PNS)). [14]

PNS =∆ P (yx, y
′
x′)

PNS denotes for the probability that y would respond to x both ways, and therefore measures both
the sufficiency and necessity of x to produce y.

Tian and Pearl [16] used Balke’s program [1] to provide tight bounds for PNS, PN, and PS.

PNS has the following tight bounds:

max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 ≤ PNS ≤ min


P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′) + P (x, y′) + P (x′, y)

 (1)

Note that we omitted the bounds of PN and PS because this study focuses primarily on the adequate
sample size for estimating the bounds of PNS, it is simple to extend to other probabilities of causation.
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Figure 1: The Causal Model, where X is a binary treatment, Y is a binary effect, and Z is a set of 20
independent binary confounders.

3 Main Results

The bounds of PNS are the linear combination of the experimental distributions P (yx), P (yx′) and
the observational distributions P (x, y), P (x, y′), P (x′, y), P (x′, y′) from Equation 1. Therefore, if
we can obtain the CI of each of these distributions, then we can obtain the CIs of the bounds of the
PNS. Let R be a random variable such that R = 1 if the event yx occurs and R = 0 if the event y′x
occurs, then it is clear that R ∼ Bernoulli(P (yx)). Therefore, if we use the frequentist to estimate
the experimental and observational distributions, we have the following theorem and corollary (the
detailed proof are in the appendix):

Theorem 4. Given m experimental samples and n observational samples, if the frequentist is used
to estimate the experimental and observational distributions, then the margin error of the bounds

of PNS in 1− α confidence interval is at most z1−α/2(
√

1
m +

√
1
n ), where z1−α/2 can be found on

z-table of standard normal distribution.

Corollary 5. If the frequentist is used to estimate the experimental and observational distribution, to
obtain the at most 0.05 margin error of the bounds of PNS in 95% confidence interval, we need m

experimental samples and n observational samples, where (
√

1
m +

√
1
n ) ≤ 5/196. More specifically,

if m = n, 6147 experimental and 6147 observational samples are adequate to obtain the at most
0.05 margin error of the bounds of PNS in 95% confidence interval.

This amount of samples ensures that the margin errors of the bounds of PNS in 95% CI are no
more than 0.05. However, in practice, we usually do not need this amount of samples because there
is only one term (i.e., P (yx) − P (yx′) + P (x, y′) + P (x′, y)) in the PNS bounds of Equation 1,
which consists of four distributions. The terms such as P (yx) only require 385 experimental and
385 observational samples to obtain the at most 0.05 margin error of the 95% CI, and the terms such
as P (yx)− P (yx′) only require 1537 experimental and 1537 observational samples to obtain the at
most 0.05 margin error of the 95% CI. We will illustrate the real errors of the estimations in simulated
studies in the following section.

4 Simulation Results

Here, we present simulated studies to show that the proposed number of experimental and obser-
vational samples are adequate to obtain the desired margin errors of the bounds of PNS using two
SCMs.

4.1 Causal Model

To estimate the margin errors of the bounds, we must first understand the data generation process
to have true experimental and observational distributions. The two models we are using are shown
in Figure 1 (two models have the same causal graph, but with different coefficients in SCMs; the
generation method of the models is in the appendix), where X is a binary treatment, Y is a binary
effect, and Z is a set of 20 independent confounders (say Z1, ..., Z20). The structural equations are as
follow (for simplicity reason, we let x = 1, x′ = 0, and y = 1, y′ = 0):
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Zi = UZi for i ∈ {1, ..., 20},

X = fX(MX , UX) =

{
1 if MX + UX > 0.5,
0 otherwize,

}
Y = fY (X,MY , UY ) =

{
1 if 0 < CX +MY + UY < 1 or 1 < CX +MY + UY < 2,
0 otherwize,

}
where, UZi

, UX , UY are binary exogenous variables with Bernoulli distributions,
C is a constant, and MX ,MY are linear combinatations of Z1, ..., Z20.

The value of C,MX ,MY and the distributions of UX , UY , UZ1
, ..., UZ20

for the two models are
provided in the appendix.

4.2 Informer Data

Based on the model from the previous section, individuals are determined by 22 binary exoge-
nous variables. From the viewpoint of the informer, we must know the actual experimental (i.e.,
P (yx), P (yx′)) and observational distributions (i.e., P (x, y), P (x, y′), P (x′, y)) to compute the true
PNS bounds for the comparison purpose. Since the structural equations and the exogenous vari-
able distributions are explicit, the experimental and observational distributions are as follows (we
illustrated two terms, see the appendix for full details):

P (yx) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1
)× ...× P (uZ20

)fY (1,MY , uY ),

P (x, y) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1
)× ...× P (uZ20

)×

×fX(MX , uX)fY (fX(MX , uX),MY , uY ),

We can then obtain the informer view of the bounds of PNS using Equation 1 and the above
observational and experimental distributions.

4.3 Experimental Sample

Here is how we prepared the finite experimental samples. Again, an individual is determined
by UX , UY , and UZ1

, ..., UZ20
. Therefore, we first generated (UX , UY , UZ1

, ..., UZ20
) at ran-

dom using their distributions; then we generated X at random using Bernoulli(0.5); the value
of Y is then fY (X,MY , UY ). We then collect a experimental sample (X,Y ). P (yx) is then
estimated as P̂ (yx) = the number of experimental samples (1,1)

the number of experimental samples (1,Y) . P (yx′) is then estimated as P̂ (yx′) =
the number of experimental samples (0,1)
the number of experimental samples (0,Y) .

4.4 Observational Sample

Similarly to experimental sample, we first generated (UX , UY , UZ1
, ..., UZ20

) at random using
their distributions; the value of X is then fX(MX , UX); the value of Y is then fY (X,MY , UY ).
Then, we collect a observational sample (X,Y ). P (x, y), P (x, y′), P (x′, y) estimates are
then P̂ (x, y) = the number of observational samples (1,1)

the number of total observational samples , P̂ (x, y′) = the number of observational samples (1,0)
the number of total observational samples , and

P̂ (x′, y) = the number of observational samples (0,1)
the number of total observational samples .

4.5 Simulation Results

For the two SCMs, we randomly generated 385, 1537, and 6147 experimental and 385, 1537, and
6147 observational samples respectively for 1000 times as described in the previous sections. The
true bounds of the PNS obtained from true distributions were then compared to the estimated bounds
obtained from finite experimental and observational samples. Figures 2 and 3 show the comparison
results. We see that when the sample size is 385 or even 1537, the bounds are still in a relatively
large unstable situation, with some of the estimated lower bounds being even larger than the true PNS
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(a) 385 experimental and 385 obser-
vational samples.

(b) 1537 experimental and 1537 ob-
servational samples.

(c) 6147 experimental and 6147 ob-
servational samples.

Figure 2: Estimation of the bounds of PNS for the first model using different size of samples.

(a) 385 experimental and 385 obser-
vational samples.

(b) 1537 experimental and 1537 ob-
servational samples.

(c) 6147 experimental and 6147 ob-
servational samples.

Figure 3: Estimation of the bounds of PNS for the second model using different size of samples.

value. When the sample size reached 6147, the estimations appear very stable and always include the
true PNS value. We also plot the sample size v.s. the average error of estimations (i.e., |estimated
bounds − true bounds|/1000) as shown in Figure 4. The average errors improved significantly before
1500 sample sizes, therefore, 1537 should be a good sample size to use in practice even though the
adequate sample size from the theorem is 6147. Besides, starting at roughly 300 sample size, the
average errors are less than the expected margin error of 0.05. This is because the proposed theorem
is of adequate size and considers the worst-case scenario.

5 Discussion

We demonstrated how to evaluate the precision of the probability of causation estimation using PNS.
It is simple to extend to nonbinary probabilities of causation as defined in [5]. In such cases, we
can still define a random variable, R, that obeys the Bernoulli distribution and whose parameter is
the experimental distribution P (yx). This work can be extended to unit selection problems [6, 8],
because the unit selection problems are linear combination of the probabilities of causation. This
work can be extended to estimate experimental distributions [9, 13] using observational data.

6 Conclusion

We showed how to assess the accuracy of a PNS bounds estimation given by a finite number of
experimental and observational samples, as well as how many experimental and observational samples
are adequate to achieve a certain accuracy level of a PNS bounds estimation. Both theoretical and
experimental results are provided. The proposed method can also be extended to general probabilities
of causation.
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(a) First model. (b) Second model.

Figure 4: Average error of estimations using different size of data.
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A Appendix

A.1 Proof of Theorem 4

Proof. Let R be a random variable, such that R = 1 if the event yx occurs and R = 0 if the event y′x
occrus, then R ∼ Bernoulli(P (yx)).
Let R = (R1, ..., Rm) be m random experimental samples of R, and Sm =

∑m
i=1 Ri.

Therefore, Sm ∼ binomial(m,P (yx)).
By Central limit theorem, we have,

Sm−mp√
mP (yx)(1−P (yx))

→ N(0, 1) as m → ∞.

We also have P̂ (yx) = Sm/m
P−→ P (yx),

Thus, we have,√
P (yx)(1−P (yx))

P̂ (yx)(1−P̂ (yx))

P−→ 1 and P̂ (yx)−P (yx)√
P (yx)(1−P (yx))/m

L−→ N(0, 1).

Therefore, we have,
P̂ (yx)−P (yx)√

P̂ (yx)(1−P̂ (yx))/m

L−→ N(0, 1).

We know that P (| P̂ (yx)−P (yx)√
P̂ (yx)(1−P̂ (yx))/m

| ≤ z1−α/2) = 1− α,

we have the confidence interval of P̂ (yx) is

[P̂ (yx)− z1−α/2 ·
√
P̂ (yx)(1− P̂ (yx))/m, P̂ (yx) + z1−α/2 ·

√
P̂ (yx)(1− P̂ (yx))/m].

The margin of error of P̂ (yx) is z1−α/2 ·
√
P̂ (yx)(1− P̂ (yx))/m, denoted as

err(P̂ (yx)) = z1−α/2 ·
√
P̂ (yx)(1− P̂ (yx))/m.

We then have,

err(P̂ (yx)) = z1−α/2 ·
√
P̂ (yx)(1− P̂ (yx))/m ≤ z1−α/2 ·

√
1

4m =
z1−α/2

2

√
1
m .

Similarly, we have,

err(P̂ (yx′)) ≤ z1−α/2

2

√
1
m ,

err(P̂ (y)) ≤ z1−α/2

2

√
1
n ,

err(P̂ (x, y)) ≤ z1−α/2

2

√
1
n ,

err(P̂ (x′, y)) ≤ z1−α/2

2

√
1
n ,

err(P̂ (x, y′)) ≤ z1−α/2

2

√
1
n ,

err(P̂ (x′, y′)) ≤ z1−α/2

2

√
1
n .

We also have the fact that err(A+B) ≤ err(A) + err(B) and err(A−B) ≤ err(A) + err(B),

plug into Equation 1, we obtain that err(bounds of PNS) ≤ z1−α/2(
√

1
m +

√
1
n ).

A.2 Proof of Corollary 5

Proof. Let α = 0.05.

We need z0.975(
√

1
m +

√
1
n ) ≤ 0.05.

Simply plug z0.975 = 1.96 in, we have,

(
√

1
m +

√
1
n ) ≤ 5/196.

And if m = n, we have,√
1
m ≤ 5/392,

Therefore, m ≥ 6146.56.
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A.3 Two Causal Models

First, MX and MY are both linear combinatation of Z1, ..., Z20. So for each model, we need to
generate 20 coefficients for MX , 20 coefficients for MY , a constant C, and 22 Bernoulli distribution
parameters for UX , UY , UZ1

, ..., UZ20
. We generated the coeefficients for MX ,MY and C uniformly

from [−1, 1], and generated the Bernoulli distribution parameters unoformly from [0, 1]. The detailed
two models are as follow:
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A.3.1 Model 1

Zi = UZi for i ∈ {1, ..., 20},

X = fX(MX , UX) =

{
1 if MX + UX > 0.5,
0 otherwize,

}
Y = fY (X,MY , UY ) =

{
1 if 0 < CX +MY + UY < 1 or 1 < CX +MY + UY < 2,
0 otherwize,

}
where, UZi

, UX , UY are binary exogenous variables with Bernoulli distributions.s.t.,
UZ1

∼ Bernoulli(0.352913861526), UZ2
∼ Bernoulli(0.460995855543),

UZ3
∼ Bernoulli(0.331702473392), UZ4

∼ Bernoulli(0.885505026779),
UZ5

∼ Bernoulli(0.017026872706), UZ6
∼ Bernoulli(0.380772701708),

UZ7
∼ Bernoulli(0.028092602705), UZ8

∼ Bernoulli(0.220819399962),
UZ9

∼ Bernoulli(0.617742227477), UZ10
∼ Bernoulli(0.981975046713),

UZ11
∼ Bernoulli(0.142042291381), UZ12

∼ Bernoulli(0.833602592350),
UZ13 ∼ Bernoulli(0.882938907115), UZ14 ∼ Bernoulli(0.542143191999),
UZ15 ∼ Bernoulli(0.085023436884), UZ16 ∼ Bernoulli(0.645357252864),
UZ17 ∼ Bernoulli(0.863787135134), UZ18 ∼ Bernoulli(0.460539711624),
UZ19

∼ Bernoulli(0.314014079207), UZ20
∼ Bernoulli(0.685879388218),

UX ∼ Bernoulli(0.601680857267), UY ∼ Bernoulli(0.497668975278),
C = −0.77953605542,

MX = [Z1 Z2 ... Z20]×



0.259223510143
−0.658140989167
−0.75025831768
0.162906462426
0.652023463285

−0.0892939586541
0.421469107769
−0.443129684766
0.802624388789
−0.225740978499
0.716621631717
0.0650682260309
−0.220690334026
0.156355773665
−0.50693672491
−0.707060278115
0.418812816935

−0.0822118703986
0.769299853833
−0.511585391002



,MY = [Z1 Z2 ... Z20]×



−0.792867111918
0.759967136147
0.55437722369
0.503970540409
−0.527187144651
0.378619988091
0.269255196301
0.671597043594
0.396010142274
0.325228576643
0.657808327574
0.801655023993
0.0907679484097
−0.0713852594543
−0.0691046005285
−0.222582013343
−0.848408031595
−0.584285069026
−0.324874831799
0.625621583197
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A.3.2 Model 2

Zi = UZi
for i ∈ {1, ..., 20},

X = fX(MX , UX) =

{
1 if MX + UX > 0.5,
0 otherwize,

}
Y = fY (X,MY , UY ) =

{
1 if 0 < CX +MY + UY < 1 or 1 < CX +MY + UY < 2,
0 otherwize,

}
where, UZi , UX , UY are binary exogenous variables with Bernoulli distributions.s.t.,
UZ1 ∼ Bernoulli(0.524110233482), UZ2 ∼ Bernoulli(0.689566064108),
UZ3 ∼ Bernoulli(0.180145428970), UZ4 ∼ Bernoulli(0.317153536644),
UZ5

∼ Bernoulli(0.046268153873), UZ6
∼ Bernoulli(0.340145244411),

UZ7
∼ Bernoulli(0.100912238566), UZ8

∼ Bernoulli(0.772038172066),
UZ9

∼ Bernoulli(0.913108434869), UZ10
∼ Bernoulli(0.364272299067),

UZ11
∼ Bernoulli(0.063667554704), UZ12

∼ Bernoulli(0.454839320009),
UZ13

∼ Bernoulli(0.586687215140), UZ14
∼ Bernoulli(0.018824647595),

UZ15
∼ Bernoulli(0.871017316787), UZ16

∼ Bernoulli(0.164966968157),
UZ17 ∼ Bernoulli(0.578925020078), UZ18 ∼ Bernoulli(0.983082980658),
UZ19 ∼ Bernoulli(0.018033993991), UZ20 ∼ Bernoulli(0.074629121266),
UX ∼ Bernoulli(0.29908139311), UY ∼ Bernoulli(0.9226108109253),
C = 0.975140894243,

MX = [Z1 Z2 ... Z20]×



0.843870221861
0.178759296447
−0.372349746729
−0.950904544846
−0.439457721339
−0.725970103834
−0.791203963585
−0.843183562918
−0.68422616618
−0.782051030131
−0.434420454146
−0.445019418094
0.751698021555
−0.185984172192
0.191948271392
0.401334543567
0.331387702568
0.522595634402
−0.928734581669
0.203436441511



,MY = [Z1 Z2 ... Z20]×



−0.453251661832
0.424563325534
0.0924810605305
0.312680246141
0.7676961338

0.124337421843
−0.435341306455
0.248957751703
−0.161303883519
−0.537653062121
−0.222087991408
0.190167775134
−0.788147770713
−0.593030174012
−0.308066297974
0.218776507777
−0.751253645088
−0.11151455376
0.785227235182
−0.568046522383
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A.4 Informer Data

Detailed informer data can be obtained via the following equations:

P (yx) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1)× ...× P (uZ20)fY (1,MY , uY ),

P (yx′) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1
)× ...× P (uZ20

)fY (0,MY , uY ),

P (x, y) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1
)× ...× P (uZ20

)×

×fX(MX , uX)fY (fX(MX , uX),MY , uY ),

P (x, y′) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1)× ...× P (uZ20)×

×fX(MX , uX)(1− fY (fX(MX , uX),MY , uY )),

P (x′, y) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1
)× ...× P (uZ20

)×

×(1− fX(MX , uX))fY (fX(MX , uX),MY , uY ).

P (x′, y′) =
∑

UX ,UY ,UZ1
,...,UZ20

P (uX)P (uY )P (uZ1)× ...× P (uZ20)×

×(1− fX(MX , uX))(1− fY (fX(MX , uX),MY , uY )).
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