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Abstract

Program synthesis algorithms produce interpretable and generalizable code that
captures input data but are not directly amenable to continuous optimization using
gradient descent. In theory, any program can be represented in a Turing complete
neural network model, which implies that it is possible to compile syntactic pro-
grams into the weights of a neural network by using a technique known as neural
compilation. This paper presents a combined algorithm for synthesizing syntactic
programs, compiling them into the weights of a neural network, and then tuning
the resulting model. This paper’s experiments establish that program synthesis,
neural compilation, and differentiable optimization together form an efficient al-
gorithm for inducing abstract algorithmic structure and a corresponding local set
of desirable complex programs

1 Introduction

Program synthesis efficiently induces abstract computer programs from data. Alternatively, gradi-
ent optimization induces parameterized functions which can be seen as a relaxed form of program
search [1, 2, 3]. However, programs recovered via gradient optimization will be represented as real-
valued weights, in contrast to code in a higher-level language. Generally, program synthesis is more
appropriate for finding abstract algorithmic structures and gradient optimization is a flexible but
less specialized technique for relaxed program induction. This paper unifies these two paradigms
by leveraging neural compilation and decompilation: techniques for transforming code into neural
network weights and transforming weights back into code [4, 5, 6, 7]. This hybrid algorithm retains
both the generalization of program synthesis and the flexibility of gradient optimization.

The closest ideas to this paper are forms of neurosymbolic programming [3], and AutoML, which
each mix elements of program synthesis, symbolic search, and differentiable computing [8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. However, program synthesis combined with neural compilation and
optimization is a unique and direct form of hybrid discrete-continuous neurosymbolic search.

Neural Compilation The neural compilation algorithm in this paper is a replication of [6]. His-
torically, [4] established the Turing completeness of neural networks, which implies the existence of
a neural compiler: a function that maps any Turing-complete program into the weights of a neural
network. Shortly after, [5] created the first neural compiler, based on Pascal. However, this neural
compiler could not tune compiled programs using gradient descent. Accordingly, [6] created the first
neural compiler which was adaptive and could be locally tuned with gradient descent. This focused
on a minimal assembly language that ran on a minimal differentiable computer, a type of recurrent
neural network with explicit memory and addressing schemes. Afterward, [7] created a neural inter-
preter for a higher-level language called forth, which used a differentiable stack machine. However,
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Figure 1: A neurosymbolic program induction algorithm which leverages program synthesis to find
abstract algorithmic structure that is compiled into weights and optimized to find specific programs

both [6] and [7] utilized human-written programs as initializations for optimization. In contrast, this
paper utilizes program synthesis as a method for efficiently finding abstract algorithmic structures.

Program Synthesis Program synthesis was anticipated as early as Turing, and underlied
Solomonoff’s theory of inductive inference [18, 19], though the first critical historical milestone
for program synthesis was the FlashFill program [20]. Components such as version space algebras,
equivalence-Graphs, and synthesis through unification were essential in efficiently searching the
combinatorial space of computer programs, which is otherwise intractable [1, 21, 22, 23, 24]. How-
ever, an even more critical feature of effective program synthesis is abstraction: the ability to create
a customized library of higher-level programs which capture common patterns, making program in-
duction more efficient [25, 26, 27, 28]. Finding abstractions and composing them is a central feature
of human intelligence, and therefore also central for machines [29, 30, 31, 32, 33].

Differentiable Computing The minimal differentiable computer in this paper builds on recurrent
neural networks [34] and their many extensions [35, 36, 37, 38, 39]. These architectures aim to
induce programs from data via gradient optimization. However, doing so is challenging due to
an overabundance of local but suboptimal solutions, as well as technical issues such as unstable
gradients [40]. Despite this, with the correct formulation and resources, it is possible to recover
interesting algorithms, such as simple planning or sorting algorithms [37].

2 Algorithm

The algorithm in this paper (depicted in Figure 1) has three primary steps: synthesis, compilation,
and optimization. First, a program synthesis algorithm searches a high-level language for abstract
program templates. Then, these programs are mapped into the minimal assembly language specified
in [6]. A neural compiler converts this lower-level assembly program into the weights of a neural
network, which then act as the initialization for optimization. Finally, the optimization algorithm
tunes this program by using gradient descent. Optimization is repeated multiple times, as algorithmic
induction is highly sensitive to initialization.

Minimal assembly language acts as a common interface between synthesis and optimization, and
neural compilation is the means for using this interface. While minimal assembly is easily compiled,
it is unideal for direct program synthesis, even when using equivalence graphs or version space alge-
bras. For example, in a 4 register machine with 13 instructions, there are roughly 100 million distinct
instruction-argument pairs in only three lines of minimal assembly. Because of this, designing an
appropriate high-level language plays a large part in the success of the overall algorithm, especially
since the language design controls what abstract algorithm templates are included. By carefully
manipulating this, it should be possible to recover desirable target programs reliably.
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2.1 Neural Compilation

Fundamentally, the minimal differentiable computer is a recurrent neural network with a controller
δ, interpreter I , language L, memory tensor M , register tensor R, and halt state h: (δ, I, L,M,R, h).
The controller outputs an instruction f and register arguments r based on the instruction register l:

f, r = δ(l) (1)
Where f is a one-hot encoding corresponding to an assembly instruction, and r contains three one-
hot encodings specifying register arguments. Typically the first two registers are inputs, and the
third register is used to store output, such as add(r1, r2, r3), which adds the values in r1 and r2
and stores the result in r3. The controller is parameterized with four weight matrices Wk, which
determine the function f , and the arguments r as functions of l, the instruction register:

f = softmax(W0l) ak = softmax(Wkl) k > 0 (2)
Neural compilation works by inverting softmax and setting Wk to produce a desired instruction
(f, r) at instruction count c. Uniform noise u is added with a magnitude γ, which allows flexible op-
timization but preserves the desired instruction. A small constant ϵ is added for numerical stability:

W0c = log(fc + γu+ ϵ) Wkc = log(rkc + γu+ ϵ) k > 0 (3)

The machine interpreter I is a function that uses the recurrent state (memory and registers) and the
instruction specified by the controller:

Mt+1, Rt+1, ht+1 = I(Mt, Rt, ft, rt) (4)
First, arguments rkt are resolved to their values vkt by a register lookup:

vkt = rktRt (5)
Many functions, such as add only depend on input registers, and not on memory state. For a machine
in base b, outputs are stored in a |L|×b×b×b lookup table T , where the first dimension corresponds
to a function f , the second two dimensions represent values v1 and v2, and the final dimension
encodes the output of f(v1, v2). For the read instruction, the b×1×b sub-tensor of T corresponding
to reading is set to the current memory, Mt, and for special instructions write, jump, halt, sub-
tensors of T are zero. T is indexed differentiably using an Einstein summation, which is analogous
to using an addition or multiplication table, but for all assembly instructions and arguments

ot = einsum(klmn, k, l,m → n, T, ft, v1t, v2t) (6)
Then, registers are updated with a soft write parameterized by r3, the output argument:

Rt+1 = Rt ⊙ (1− r3t) + ot ⊗ r3t (7)
Writing to memory uses wt, the scalar component of ft representing the write probability.

Mt+1 = (1− wt)Mt + w(1− v1t) · 1⊙Mt + v1t ⊙ v2t (8)
The jump instruction modifies the instruction register l probabilistically using j, a scalar component
of ft representing the jump probability, and z, the scalar component of v1t representing the proba-
bility that v1t is zero. Tinc denotes the sub-tensor of T for the increment instruction, and ln would
be the next instruction if the jump is not taken.

ln = lt · Tinc lt+1 = ln(1− j) + r2tz + jln(1− z) (9)
Finally, the halting probability ht is simply a scalar component of ft.

2.2 Optimization

Once a program has been compiled into program weights, it is optimized using the adam optimizer
[41], and a loss function with two components: correctness and efficiency. Correctness is a masked
cross-entropy loss between a predicted tensor P and labels L across the final dimension. µ is a
vector mask across the first dimension. Correctness is calculated for registers R and memory M :

L(P,L, µ)
correctness

= µ⊙ cross_entropy(P,L) (10)

Efficiency is a differentiable penalty for computation steps defined by halting probabilities ht.

ht>k = max(ht≤k) L(ht)
efficiency

=
∑

1− ht (11)

And the composite loss is a weighted combination of the correctness and efficiency losses:
L(M̂, R̂,M,R, h, µ)

composite
= λ(L(M̂,M, µM ) + L(R̂, R, µR))

correctness
+ λL(h)

efficiency
(12)

Neural networks and optimization components are implemented in jax and equinox [16, 17].
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1 map_loop:
2 read 1 2
3 inc 2 2
4 write 1 2
5 inc 1 1
6 jump 3

map_loop↪→
7

8

9

10

1 inc 4 4
2 inc 4 4
3 sum_loop:
4 read 3 2
5 add 1 2 1
6 inc 3 3
7 max 3 4 5
8 sub 4 5 5
9 jump 5

sum_loop↪→
10 write 3 1

1 inc 2 2
2 fib_loop:
3 write 3 2
4 add 1 2 2
5 read 3 1
6 write 3 2
7 inc 3 3
8 jump 4

fib_loop↪→
9

10

Listing 1: Minimal assembly code for map, sum-reduce, and fibonacci functions

3 Experiments

These experiments explore which algorithms can be recovered via program synthesis, optimization,
or a combined algorithm. An ideal evaluation task involves high-level algorithmic structure that can
be established via program synthesis but contains sub-components that are continuous or best opti-
mized as neural networks. Program synthesis finds the overall structure of a program, and the local
optimizer tunes this program locally. The primary experiment uses a budget of k = 100 optimization
runs and compares structured initializations to random initializations. Since many algorithms share
a common structure (recursion, looping, conditionals, etc), starting with an algorithm template acts
as a positive inductive bias, similar to how the choice of network architecture affects program be-
havior. Recovery is based on observational equivalence over a dataset of sampled program outputs.
This allows recovering syntactically different solutions to a problem and discourages overfitting to
a particular input-output pair.

Generally, algorithmic skeletons are better initializations than random initialization, but it is com-
mon for differentiable tuning to discard large parts of algorithm structure in certain problems. Since
program synthesis finds various algorithmic skeletons, it outperforms using multiple uniform ran-
dom initializations. Even programs that aren’t directly enumerated, such as the Fibonacci program
(Listing 1, Table 1), can be recovered using the combination of synthesis and tuning. Introducing
no-ops into program synthesis (and not penalizing them) can be advantageous, as gradient descent
tuning does not naturally model concepts like insertion. Table 1 includes no-op-padded program ini-
tializations in the second half. Interestingly, a few results defy intuition, such as that inc is harder
to find, and that map dec is not transitive with map inc, we hypothesize that this is because it is
difficult for optimization to represent simpler programs, as it typically saturates the available instruc-
tions. A preliminary grid search found a noise parameter in the neighborhood of γ = 0.3, which is
sufficient for gradient information to capture the local program space.

Table 1: Recovery rates for selected algorithms and initializations

Algorithm inc map inc map dec reduce Parity Fibonacci

Optimization 19% 86% 56% 41% 95% 4%
Synthesis 100% 100% 100% 100% 100% 0%
Both 100% 100% 100% 100% 100% 75%

Initializations

map inc - 100% 7% - 7% 26%
map dec - 45% 100% - 6% 41%
loop no-op 100% 100% 100% 100% 49% 75%

Table 1 shows the percent of perfect algorithms recovered for each algorithm and different initial
program structures. Program synthesis will recover many of the program structures listed in this
table, some of which will be near-misses to a desired program. Then, differentiable tuning can find
a local variant of the program that is close to a desired program. This shows that, for this neural
architecture, the combined synthesis-compilation algorithm is more computationally efficient than
optimization alone.
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4 Limitations & Future Work

While the neural compilation method introduced by [6] is straightforward to compute and implement,
it could be more adaptive and general. One major limitation is the lack of parameters in the network
model: each instruction and its arguments are determined only from the instruction register, and
the function used is linear with a softmax activation. For example, in a network model for a 32
instruction program, there are only 3, 640 parameters. While this is desirable for some applications,
it is in contrast to implementations such as [34, 35, 36, 37] where network behavior is a function of
memory and input, and modern network architectures that have millions or billions of parameters.
Also, using a recurrent neural network inherently makes representing long programs and sequences
difficult because of the unstable gradient problem. Future work will explore neural compilation
techniques that are more adaptive, tunable, and stable but retain interpretability and efficiency.

The minimal differentiable computer introduced in [6] is a relatively weak program induction base-
line. Future work will include stronger end-to-end differentiable algorithm induction baselines, es-
pecially modern architectures [37, 39]. However, the minimal differentiable computer is highly
compute and parameter efficient.

The program synthesis algorithm given in this paper is relatively simple compared to modern tech-
niques. In particular, it does not generate abstractions or utilize neural search heuristics such as those
in [25]. These elements are modular and would most likely boost performance, especially if used
in tandem with differentiability-based tuning. Finally, given sufficient computing power and time, a
more advanced version of this algorithm would likely be successful on more interesting tasks, such
as sorting or planning algorithms that are embedded in larger neural programs.
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A Appendix

A.1 Interpreting distributed programs

Differentiable programs are distributed, because the instruction register is a probability distribution.
This means that multiple instructions can be carried out at once, which makes one-to-one decompi-
lation difficult, and also prevents these programs from being easily human-interpretable. Distributed
execution is affected by two factors in our model: the probability that a current instruction is a jump
instruction, and the probability that the comparison register for the jump instruction is equal to zero.
Also, every operation is distributed, so each register’s values and all memory values are multino-
mial distributions created by softmax, which overlap with one another. Thus, in a longer non-trivial
program, decompiling network weights into a one-to-one interpretation is more difficult. However,
starting with a decompilable algorithm increases the probability that a tuned algorithm will be inter-
pretable, as the initialized algorithm is less distributed than a naturally recovered algorithm.

1 read 0 1
2 inc 1 1
3 read 1 1
4 write 0 1
5 halt

1 map_loop:
2 read 1 2
3 inc 2 2
4 write 1 2
5 inc 1 1
6 jump 3

map_loop↪→

1 cond:
2 mod 2 3 1
3 jump 1 true
4 jump 0 false
5 true:
6 write 4 1
7 false:
8 read 4 1

1 loop:
2 noop
3 noop
4 inc 3 3
5 jump 4 loop

1 filter_loop:
2 read 3 2
3 mod 2 6 1
4 write 3 1
5 inc 3 3
6 max 3 4 5
7 sub 4 5 5
8 jump 5

filter_loop↪→

1 inc 2 2
2 fib_loop:
3 write 3 2
4 add 1 2 2
5 read 3 1
6 write 3 2
7 inc 3 3
8 jump 4

fib_loop↪→
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