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Abstract

The Abstraction and Reasoning Corpus (ARC) aims at benchmarking the perfor-
mance of general artificial intelligence algorithms. The ARC’s focus on broad
generalization and few-shot learning has made it impossible to solve using pure ma-
chine learning. A more promising approach has been to perform program synthesis
within an appropriately designed Domain Specific Language (DSL). However,
these too have seen limited success. We propose Abstract Reasoning with Graph
Abstractions (ARGA), a new object-centric framework that first represents images
using graphs and then performs a constraint-guided search for a correct program in
a DSL that is based on the abstracted graph space. Early experiments demonstrate
the promise of ARGA in tackling some of the complicated tasks of the ARC rather
efficiently, producing programs that are correct and easy to understand.

1 Introduction

In an attempt to better measure the gap between machine and human learning, the Abstraction
and Reasoning Corpus (ARC) was created by Chollet in 2019. The dataset is a collection of 1000
image-based reasoning tasks, where each task asks for an output image given an input. To “learn"
a procedure that produces said output, each problem comes with 2–4 input-output image pairs as
training instances; these training inputs are different from the actual test input, but can be solved
by the same (unknown) procedure. Some example problems from the ARC are shown in Figure
1. A 3-month competition with over 900 teams was hosted on Kaggle with the goal of solving the
ARC (Kaggle 2020). Despite the massive effort, the resulting solutions only achieved 20% accuracy
on the hidden test set, at best. In fact, the first-place solution could not solve any of the three examples
shown in Figure 1 despite their simplicity to a human.

Recognizing and representing objects, actions performed on them, and relationships between them
makes up a large portion of human cognition core systems (Spelke and Kinzler 2007). The ARC
embodies this notion in its tasks. In fact, Acquaviva et al. (2021) found that when humans attempt to
solve ARC tasks through language, half of the phrases they use relate to object detection. Therefore,
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Figure 1: Sample ARC Tasks. Three tasks are shown. For a given task, each row contains one
example input-output pair. The top three rows contain the “training" instances and the bottom row
contains the “test" instance. The goal is to use the training instances to solve the test instance.

Figure 2: Example solution by ARGA. The input image is first abstracted into a graph in which
each node represents a set of connected single-color non-background pixels. The solution colors in
blue all nodes not containing exactly six pixels (size 6), then colors in red all nodes with size 6.

an object-centric approach to solving the ARC is highly promising. Surprisingly, this key insight is
yet to be leveraged.

2 ARGA: Abstract Reasoning with Graph Abstractions

We propose a two-stage framework that takes an object-centric approach to solving an ARC task.
First, the graph abstraction stage, where the 2D grid images are mapped to (multiple) undirected
graph representations that capture information about the objects in the images at a higher abstracted
level. Second, the solution synthesis stage, where a constraint-guided search is used to formulate the
series of operations to be applied to the abstracted graphs that will lead to a solution. An example
solution found by ARGA can be seen in Figure 2. The space of all possible operations are defined by
a lifted relational Domain Specific Language (DSL) developed for ARGA.

Since the DSL defines operations on the abstracted graphs, this section will first formally define the
graph abstraction stage. Then, the DSL will be defined in detail. Finally, the solution synthesis stage
will be discussed.

2.1 Graph Abstraction

Graph abstraction allows us to search for a solution at a macroscopic level. In other words, we are
modifying groups of pixels at once, instead of modifying each individual pixel separately. As a result,
this approach has a smaller search space than its non-abstracted, raw image counterpart. The formal
language we use builds on first-order logic which provides a flexible and expressive language for
describing typed objects and relations. Object types in our DSL are shown in Table 1 and can be used
as unary predicates, e.g., Node(n) is true iff n ∈ Node. Relations between objects are shown in
Table 2.

Let i be any input or output 2D grid image from an ARC task. i can be completely specified by its set
of pixels p. Let g be an abstracted graph with sets of abstracted nodes n. Each Node n represents
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Filter(x) ::= Type(x)

::= Filter(x) ∧ Filter(x)

::= Filter(x) ∨ Filter(x)

::= ¬Filter(x)

::= ∃y Rel(x, y) ∧ Filter(y)

::= ∃y Rel(y, x) ∧ Filter(y)

::= ∀y Rel(x, y) =⇒ Filter(y)

::= ∀y Rel(y, x) =⇒ Filter(y)

::= Rel(x, c) [c is a constant]
::= Rel(c, x) [c is a constant]

Param(x, v) ::= v = c [c is a constant]
::= Rel(x, v)

::= Rel(v, x)

::= ∃y Rel(x, y) ∧ Filter(y)

∧ Param(y, v)

::= ∃y Rel(y, x) ∧ Filter(y)

∧ Param(y, v)

Figure 3: DSL Grammar

an object that is detected in the original image i based on the rules of the abstraction and relations
between the nodes represent relationships between these objects.

Object Type Set Object Type Description
i ∈ Image A 2D grid image
g ∈ Graph An abstracted graph
n ∈ Node A node in an abstracted graph
p ∈ Pixel A pixel on an image
c ∈ Color Color (including background)
s ∈ Size Size of a node (# pixels)
d ∈ Direction Directions within the 2D image
pa ∈ Pattern A pattern found on the image
t ∈ Type Generic Type (any above)

Table 1: Object Types in ARGA

Typed Object Relations Description
containsNode(Graph,Node) Graph contains Node
containsP ixel(Node, P ixel) Node contains Pixel
above(Node,Node) Head Node is above tail Node

in the 2D image
below(Node,Node) Head Node is below tail Node

in the 2D image
leftOf(Node,Node) Head Node is left of tail Node

in the 2D image
rightOf(Node,Node) Head Node is right of tail

Node in the 2D image
overlap(Node,Node) Two Nodes are overlapping
neighbor(Node,Node) An edge exists between two

Nodes
color(Node,Color) color of Node
size(Node, Size) size of Node
Rel(Type, Type) Generic Relation (any above)

Table 2: Object Relations in ARGA.

Therefore, the graph abstraction pro-
cess executes a mapping that gener-
ates some abstracted graph g for im-
age i. We note that there are multiple
ways in which this mapping can be de-
fined. Different graph abstractions can
be used to identify objects in the image
using different definitions of what an
object is. An example abstraction is
visualized in Figure 2.

2.2 A Graph DSL for the ARC

We now introduce a lifted relational
DSL for ARGA built upon the objects
and relations defined previously. The
DSL is used to formally describe the
filter language used to match node pat-
terns, determine graph transformation
parameters, and carry out transforma-
tions on abstracted graphs as described
in the following.

Filters: Filters are used to select
nodes from the graph. The fundamen-
tal grammar is a subset of first-order
logic as shown in Figure 3 (Top). An
example filter that matches nodes con-
taining exactly 6 pixels is defined as filterBySize6(n) ≡ Node(n) ∧ size(n, 6). We remark that
filterBySize6(n) and its negation (¬filterBySize6(n)) are used to select nodes to be colored red
and blue respectively in the example seen in Figure 2.
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Transformations: Transformations are intuitively used to modify nodes selected by filters. They
do so by modifying the values of object relations. An example transformation definition is as follows.

updateColor(n : Node, c : Color) −→ color(n, c) ∧ ¬color(n, c′) ∀c′ ∈ Color s.t. c′ ̸= c

In this example, the transformation updateColor updates (−→) the color of the Node n to c. It does so
by assigning color(n, c) to true and color(n, c′) to false for all other colors c′ in the abstracted graph
representation. The full list of transformations and their descriptions can be found in the Appendix.

Dynamic Parameter Transformations: In the example shown in Figure 1 (Left), we can “stati-
cally" identify the color that the nodes should be updated to. However, this does not work for the
example shown in Figure 1 (Middle), because the target color of a transformed grey object is that of
its neighboring size-1 object. Therefore, we define parameter binding functions which allow us to
dynamically generate parameters for transformations. The grammar for parameter binding is shown
in Figure 3 (Bottom).

While sharing a similar grammar as filters, the Param(x, v) has a special semantics different from
filters that we pause to discuss. First, the goal of Param(x, v) is to find possible matching parameters
for an object x, hence we never apply a filter to x in the grammar since we are not aiming to restrict it —
x is assumed given. Second, we can interpret Param(x, v) as providing all possible parameter values
v that make Param(x, v) true. However, we need a unique parameter v; if no v matches for a given x
then Param(x, v) fails to return a parameter and we cannot apply the transformation (it is considered
a noop). If multiple v match, then we deterministically order and return the first matching v. We
remark that this dynamic parameter grammar includes static cases such as Param(x, v) ≡ v = blue,
which would ignore the node x and always return the parameter blue. Following is a more complex
parameter binding:

bindSize1NeighborColor(x, v) ≡ ∃y neighbor(x, y) ∧ size(y, 1) ∧ Color(y, v))

Here, bindSize1NeighborColor(x, v) matches (and returns) the color v of any neighbor of x with
a size of 1 pixel. In the example shown in Figure 1 (Middle), suppose we have grey Node n selected
by filters, we can then find the color to update it by calling bindSize1NeighborColor(n,Color).

for each n ∈ Node

if filter(n)

then vi ← [ {v|Parami(n, v)} for i ∈ {1 . . . k}
transform(n, v1, . . . , vk)

Figure 4: Full Operation. We assume that← [ deter-
ministically selects a unique value vi if |{v}| ≠ 1.

Full Operation With the filters, transforma-
tions and parameter bindings formally defined,
we may now combine them to perform a full
modification to the abstracted graph. Given a
filter, a transformation, and k parameter bind-
ings Parami(x, v) (i ∈ {1 . . . k}) for each
parameter taken by the transformation (possi-
bly none if k = 0), the full operation is shown
in Figure 4.

The set of operations required for solving the example in Figure 1 (Middle) are filterByColorGrey,
updateColor and bindSize1NeighborColor. We note that tasks such as the example shown in
Figure 2 do not require dynamic parameters, in those instances, the parameter binding found in the
solution simply returns a static value v = c.

2.3 Solution Synthesis

We implement a greedy best-first search, an illustration of which is shown in Figure 5. Suppose ARC
task t has m training instances, with input-output images {inputi, outputi} for i ∈ {1 . . .m}. Each
node in our search tree contains a set of graphs {ginput_i} for i ∈ {1 . . .m}. ginput_i represents
inputi after the abstraction process and applying a set of operations {oj} for j ∈ {1 . . . k}, where
each oj is a full operation as defined previously. k can be 0 which means no operations applied.

The primary metric used for node selection is how close it is to the target training output. For each
node, we reconstruct the corresponding 2D image for each of the abstracted graphs {ginput_i}. We
then compare the reconstructed images with the training outputs {outputi} and calculate a penalty
score using Appendix Table 5. To expand a node with abstracted graphs {ginput_i}, we first identify
the set of all valid full operations O. Then, for each o ∈ O, we apply to {ginput_i} and obtain updated
abstracted graphs {g′i} for i ∈ {1 . . .m}. We add the new abstracted graphs {g′i} to the search tree
as a new node and record the set of operations {oj for j ∈ {1 . . . k}, o} that led to it.
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Figure 5: Illustration of ARGA’s constraint-guided search. Note that a reconstructed 2D image is
used at each node for better visualization, actual nodes consists a set of abstracted graphs.

Constraint-Guided Search: To reduce the size of the search space, we utilize constraints for
pruning branches in the search tree. We illustrate this concept with an example. All objects in Figure
1 (Left) should not change in position. We can therefore define the constraint:

positionF ixed(n : Node, n′ : Node) ≡ ∀p ∈ P containsP ixel(n, p) = containsP ixel(n′, p)

which returns True if a node and the updated version of that node share the same set of pixels, thus
making sure that the node’s position on the image remains fixed through the transformation. All
transformations that modify a node’s pixels can therefore be pruned by this constraint in the search
tree. A visualization of pruning the search space with constraints is shown in Figure 5.

A set of constraints similar to the one shown above was defined for the ARC domain. To obtain the
subset of constraints valid for pruning a specific search tree, we implemented a simple constraint
acquisition algorithm influenced by the ModelSeeker (Beldiceanu and Simonis 2012) and Inductive
Logic Programming (Lallouet et al. 2010).

While expanding a node in the search tree, we apply the same abstraction process for the output
images {outputi} as the input images to obtain {goutput_i} for i ∈ {1 . . .m}. Then, for each full
operation o ∈ O, we apply its filter operation f to ginput_i and goutput_i to obtain pairs of nin

and nout. For each constraint c, if c(nin, nout) evaluates to True for all pairs found by f , all full
operations o with filter f and transformation t that violate constraint c will be pruned.

3 Experiments

Chollet (2019) states that the ARC aims to evaluate “Developer-aware generalization”, and all
ARC tasks are unique and do not assume any knowledge other than the core priors. Therefore,
implementing and evaluating ARGA on a subset of ARC tasks should provide useful insight into the
effectiveness of our method without the need for extensive development of transformation functions,
which are not the focus of our contribution.

Because it is our goal to focus on abstract transformations, we identified a subset of 160 object-centric
tasks from the ARC and categorize them into three groups: (1) Object Recoloring tasks, which change
colors of some objects in the input image. (2) Object Movement tasks, which change the position of
some objects in the input image. (3) Object Augmentation tasks, which expand or add certain patterns
to objects from the input images.

To further analyze the performance of ARGA, we evaluated the Kaggle Challenge’s first-place
solution (top quarks 2020) on the same subset of tasks. The code was executed with a search depth of
4. It is noted that due to the time constraint of the Kaggle competition, the code submitted for the
competition used a mix of depth 4 and depth 3 across different tasks, which would result in slightly
worse performance. We then recorded the results for the produced candidate with the highest score.
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Model Task Type # Training Correct # Testing Correct Average Nodes Average Time (sec.)
ARGA movement 18/31 (58.06%) 17/31 (54.84%) 3830.35 89.75

recolor 25/62 (40.32%) 23/62 (37.10%) 12316.87 326.83
augmentation 20/67 (29.85%) 17/67 (25.37%) 4668.82 67.09
all 63/160 (39.38%) 57/160 (35.62%) 7504.81 178.66

Kaggle movement 21/31 (67.74%) 15/31 (48.39%) 2176777.67 62.45
First Place recolor 23/62 (37.10%) 28/62 (45.16%) 2290441.32 93.19

augmentation 35/67 (52.24%) 21/67 (31.34%) 2248151.10 66.07
all 79/160 (49.38%) 64/160 (40.00%) 2249924.92 77.08

Table 3: Results on subset of ARC. # Training correct is the number of tasks that got all the training
instances exactly right. # Testing correct is the number of tasks that got the testing instance exactly
right. Average Nodes is the average number of unique nodes added to the search tree before finding
a solution for correctly solved tasks. Average Time (sec.) is the average time in seconds to reach
solution for correctly solved tasks.

3.1 Results

The resulting performance of ARGA as well as the Kaggle first place solution is shown in Table 3.
With the exception of Object Movement tasks, our model performed slightly worse than the Kaggle
first place solution in terms of accuracy. This is likely due to the solution space spanned by our DSL
not being expressive enough, as it was developed using only a subset of the 160 tasks. On the other
hand, the DSL used in the Kaggle solution was developed by first manually solving 200 tasks from
the ARC (top quarks 2020).

Despite lower accuracy, ARGA achieves much better efficiency in search as we are able to reach
the solution with 3 order magnitude less nodes explored. This suggests that with a more expressive
DSL and a more efficient implementation (ARGA is currently implemented in python while Kaggle
solution is implemented in C++), ARGA will be able to solve more tasks with less search effort.

Furthermore, the gap between the number of tasks solving all training instances and tasks solving
the test instance is much smaller for ARGA. This suggests that ARGA is better at finding solutions
which generalize correctly while the Kaggle solution often overfits to the training instances.

4 Conclusion

We proposed Abstract Reasoning with Graph Abstractions (ARGA), an object-centric framework
that solves ARC tasks by first generating graph abstractions then performing a constraint-guided
search. We evaluated our framework on an object-centric subset of the ARC dataset and obtained
promising results. Notably, the efficiency in reaching the solution within the search space shows that
with further development of the DSL, our method has the potential to solve far more complicated
problems than state-of-the-art methods.
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A Technical Details

A.1 Full list of transformations
Transformation Description
updateColor(Node, Color) Update color of Node to Color
move(Node, Direction) Update pixels of Node to move 1 pixel in Direction
moveMax(Node, Direction) Update pixels of Node to move in Direction until

it collides with another node
rotate(Node) Update pixels of Node to rotate it clockwise
fillRectangle(Node, Color) Fill background nodes in rectangle enclosed by the

node with Color
hollowRectangle(Node, Color) Color all nodes in rectangle enclosed by the node

with Color
addBorder(Node, Color) Add additional pixels to Node in Direction
insertPattern(Node, Pattern) Insert Pattern at Node
mirror(Node, Pixel, Direction) Mirror Node toward Direction around Pixel
extend(Node, Direction) Add additional pixels to Node in Direction
flip(Node, Direction) Flip Node in place in some direction
transform(N, [k]) Generic transformation with k parameters.

Table 4: Full List of Transformations.

A.2 Heuristic Function used in Search

Actual Predicted Penalty
Background Non-background 2
Non-background Background 2
Non-background Non-background wrong color 1
Non-background Non-background right color 0
Background Background 0

Table 5: Heuristic Function used in Search

B Related Works

B.1 Current ARC Solvers

There have been many attempts at solving the ARC. Most of those that have shown some success fall
into the DSL within the program synthesis paradigm (Kaggle 2020). It has been shown that humans
are able to compose a set of natural language instructions that are expressive enough to solve most of
the ARC tasks, which suggests that the ARC is solvable with a powerful enough DSL and an efficient
program synthesis algorithm (Johnson et al. 2021).

Indeed, this is the approach suggested by Chollet (2019) when introducing the dataset: “A hypothetical
ARC solver may take the form of a program synthesis engine that uses the demonstration examples
of a task to generate candidates that transform input grids into corresponding output grids.”

Solutions using this approach include the winner of the Kaggle challenge, where the DSL was created
by manually solving ARC tasks and the program synthesis algorithm is a search that utilizes directed
acyclic graphs (DAG) to avoid duplicated search efforts. Each node in the DAG is an image, and
edges between the nodes are transformations (top quarks 2020). The second-place solution introduces
a preprocessing stage before following a similar brute-force search approach (de Miquel Bleier 2020).
Many other Kaggle top performers shares this approach (Golubev 2020; Liukis 2020; Penrose 2020).
Fischer et al. (2020) proposes a Grammatical Evolution algorithm to generate solutions within their
DSL. Alford et al. (2021) utilizes an existing program synthesis system called DreamCoder(Ellis et al.
2020) to create abstractions from a simple DSL through the process of compression. The program
then uses neural-guided synthesis to compose the solution for new tasks.

Other approaches to solving the ARC include the Neural Abstract Reasoner, which is a deep learning
method that succeeds in a subset of ARC’s problems (Kolev, Georgiev, and Penkov 2020). Assouel
et al. (2022) developed a compositional imagination approach which generates unseen tasks for
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better generalization. Ferré (2021) develops an approach based on descriptive grids. However, these
approaches either were measured only on simplified version of the ARC or have shown limited
success.

B.2 Constraint Acquisition

Constraint Acquisition (CA) is a field that aims to generate Constraint Programming (CP) models
from examples (De Raedt, Passerini, and Teso 2018). State of the art CA algorithms include Active
CA (Bessiere et al. 2013; Arcangioli, Bessiere, and Lazaar 2016) requiring interaction from the user,
and Passive CA (Bessiere et al. 2005) requiring only initial examples.

The passive CA algorithm used for ARGA was influenced by ModelSeeker (Beldiceanu and Simonis
2012), which finds relevant constraints from the global constraint catalog (Beldiceanu, Carlsson, and
Rampon 2005) as well as the system developed by Lallouet et al. (2010) which uses Inductive Logic
Programming (ILP) and formulates constraints from logical interpretations.
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