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Abstract

Image manipulation via natural language text – an extremely useful task for
multiple AI applications but requires complex reasoning over multi-modal spaces.
Neuro-symbolic approaches has been quite effective in solving such tasks as they
offer better modularity, interpretability, and generalizability. A noteworthy such
approach is NSCL [10] developed for the task of Visual Question Answering
(VQA). We extend NSCL for the image manipulation task and propose a solution
referred to as NEUROSIM. Unlike previous works, which either require supervised
data training or can only deal with simple reasoning instructions over single object
scenes; NEUROSIM can perform complex multi-hop reasoning over multi-object
scenes and requires only weak supervision in the form of annotated data for the
VQA task. On the language side, NEUROSIM contains neural modules that parse
an instruction into a symbolic program over a Domain Specific Language (DSL)
comprising manipulation operations that guide the manipulation. On the perceptual
side, NEUROSIM contains neural modules which first generate a scene graph
of the input image and then change the scene graph representation following the
parsed instruction. To train these modules, we design novel loss functions capable
of testing the correctness of manipulated object and scene graph representations
via query networks. An image decoder is trained to render the final image from the
manipulated scene graph representation. Extensive experiments demonstrate that
NEUROSIM is highly competitive with state-of-the-art supervised baselines.

1 Introduction

In this paper, our aim is to build neuro-symbolic models for the task of weakly supervised manipulation
of images comprising multiple objects, via complex multi-hop natural language instructions. We are
interested in a weakly supervised solution that does not require explicit annotation in the form of
manipulated images. We rely on the key intuition that this task can be achieved simply by querying
the manipulated representation without ever explicitly looking at the target image.

Neuro-symbolic 
Image Manipulator

(NEUROSIM)

Change the size of 
the thing behind the 
large ball to big

O ß scene()
O ß filter(O, large)
O ß filter(O, sphere)
O ß relate(O, behind)
O ß change_size(O, large)

Input:  Source image 𝑰

Output: Manipulated image 𝑰"
Input: Instruction Text 𝑻

Output: Manipulation program 𝑷

Figure 1: The problem setup.
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Our solution builds on the work by Mao et al.[10] on Neuro-Symbolic Concept Learner (NSCL).
We extend this work to incorporate the notion of manipulation of a given image. At high level, our
solution works as follows – i) We first introduce a manipulation operation as part of the DSL and
then learn to parse the natural language manipulation instruction comprising these concepts via a
hierarchical parser [2]. The parsed instruction is represented in the form of a symbolic program
dictating the manipulation to be performed on the input image. ii) We make use of a pre-trained
network to extract latent object representations. iii) We make use of concept quantization networks
to ground the linguistic concepts into visual objects and their attributes. iv) As one of our main
contributions, we design neural modules that given a manipulation operator, transform the object
(scene) so as to have the characteristics (attributes) as dictated by the parsed manipulation instruction.
These neural modules are trained using novel loss functions that measure the faithfulness of the
manipulated scene and object representations by accessing a separate set of query networks that are
trained using VQA annotations. v) Separately, a network is trained to render the image from a scene
graph representation using a combination of L1 and adversarial losses in the style of [9]. We refer to
our system as Neuro-Symbolic Image Manipulator (NEUROSIM). Figure 1 shows an example of
(input,output) pair for NEUROSIM. For our experiment purposes, we extend CLEVR, a benchmark
dataset for VQA, to incorporate manipulation instructions and create a dataset referred to as Complex
Image Manipulation via Natural Language Instructions (CIM-NLI). Our evaluation on CIM-NLI
dataset shows that we are highly competitive with state-of-the-art supervised approaches [13, 3] for
this task, and specifically performing well on instructions which involve multi-hop reasoning.

2 Related Work

In terms of task complexity, the closest to us are approaches such as TIM-GAN [13], GeNeVA [3],
which build an encoder decoder architecture and work with a latent representation of the image as
well as the manipulation instruction. They require explicit annotations in terms of manipulated images
during training. We argue that this can require a significant more annotation effort, compared to our
weak supervision setting, where we only need visual question answer annotations. Unlike us, these
approaches work with purely neural models, and as shown in our experiments, their performance is
heavily dependent on the amount of data available for training.

In terms of technique, the closest to our work are neuro-symbolic approaches for Visual Question
Answering (VQA) such as NSVQA [12], NSCL [10], Neural Module Networks [1] and its exten-
sions [6, 7]. While these works’ modeling approach is similar to ours and consists of constructing
latent programs, the desired tasks are different. They solve the task of VQA, whereas our goal is to
solve the task of automated image manipulation.

3 NEUROSIM: Neuro-Symbolic Image Manipulator

Figure 2 captures a high level architecture of the proposed NEUROSIM pipeline. NEUROSIM allows
editing images containing multiple objects, via complex natural language instructions. Similar to Mao
et al. [10], NEUROSIM assumes the availability of a domain-specific language (DSL) for parsing the
instruction text T into an executable program P . It reasons over the image for locating where the
manipulation needs to take place followed by carrying out the manipulation operation. The first three
modules, namely i) visual representation network, ii) semantic parser, and iii) concept quantization
network are borrowed from the NSCL pipeline [10] and suitably customized/trained as required for
our purpose. In what follows, we describe design as well as training mechanism of NEUROSIM.

3.1 Modules Inherited from NSCL

1) Visual Representation Network: Given input image I , this network converts it into a scene
graph GI = (N,E). The nodes N of this scene graph are object embeddings and the edges E are
embeddings capturing relationship between pair of objects (nodes). Node embeddings are obtained
by passing the bounding box of each object (along with the full image) through a ResNet-34 [4].
Edge embeddings are obtained by concatenating the corresponding object embeddings.
2) Semantic Parsing Module: The input to this module is a manipulation instruction text T (or a
question when training on VQA task) in natural language. Output is a symbolic program P generated
by parsing the input text. We extend the DSL used by [10] for incorporating manipulation operators.

2



Semantic Parsing 
Module

O ß scene()
O ß filter(O, large)
O ß filter(O, sphere)
O ß relate(O, behind)
O ß change_size(O, large)

Program 𝑷

Visual 
Representation 

Network

Scene graph 𝑮𝑰
for source image

Source image 𝑰

Scene graph 𝐆𝑰"
for target image

Rendering 
Network

1

5

2

Change the size of 
the thing behind the 
large ball to big

Instruction Text 𝑻

Manipulated image 𝑰"

Concept 
Quantization 

Network

3 4

Manipulation 
Network

Program Executor

Figure 2: High level architecture of NEUROSIM.

3) Concept Quantization Network: Following [10], any object in an image is defined by the set
of visual attributes (A), and set of symbolic values (Sa) for each attribute a ∈ A. For example,
attributes can be shape, size, etc. Different symbolic values allowed for an attribute are also known as
concepts. For example, Scolor = {red, blue, green, . . .}. Each visual attribute a ∈ A is implemented
via a separate neural network fa(·) which takes the object embedding as input and outputs the attribute
value for the object in a continuous (not symbolic) space. For example, let fcolor : Rdobj −→ Rdattr

represent a neural network for the color attribute and consider o ∈ Rdobj as the object embedding.
Then, vcolor = fcolor(o) ∈ Rdattr is the embedding for the object o pertaining to the color attribute. Each
symbolic concept s ∈ Sa for a particular attribute a (for example, different kinds of colors) is also
assigned a respective embedding in the same continuous space Rdattr . Such an embedding is denoted
by cs. These concept embeddings are initialized at random, and later on fine tuned during training.
An attribute embedding (vcolor in the example above) can then be compared with the embeddings of
all the concepts (for example, cred, cblue, etc.) using cosine similarity, for the purpose of various tasks
such as filtering objects based on say, a specific color.
Training: As a first step of training NEUROSIM, we train all the above three modules via a three
step curriculum learning process as outlined in [10]. During this training, semantic parser is trained
jointly with the concept quantization networks for generating programs corresponding to the question
texts coming from the VQA dataset. The corresponding output programs are composed of primitive
operations coming from VQA DSL used in [10] (e.g. filter, count, etc.) and does not include
constructs related to the manipulation. We assume that by now, first three modules have gotten trained
for high accuracy on the VQA task. We refer the reader to [10] for more details.

3.2 Novel Modules and Training Procedure for NEUROSIM

NEUROSIM training starts with three sub-modules trained on the VQA task as described in Sec-
tion 3.1. Next, we extend the original DSL to include an additional functional sub-module within
semantic parsing module, change. Refer to appendix section A for details on the DSL. We now reset
the semantic parsing module and train it again from scratch for generating programs corresponding
to image manipulation instruction text T . Such a program is subsequently used by the downstream
pipeline to reason over the scene graph GI and manipulate the image. In this step, the semantic
parser is trained using an off-policy program search based REINFORCE [11] algorithm. Unlike the
training of semantic parser for the VQA task, in this step, we do not have any final answer like reward
supervision for training. Hence, we resort to a weaker form of supervision. In particular, consider
an input instruction text T and set of all possible manipulation program templates Pt from which
one can create any actual program P that is executable over the scene graph of the input image. For
a program P ∈ Pt, our reward is positive if this program P selects any object (or part of the scene
graph) to be sent to the change manipulation network. Once semantic parser is retrained, we clamp
the first three modules and continue using them for the purpose of parsing instructions and converting
images into their scene graph representations. Scene graphs are manipulated using our novel module
called change manipulation network which is describe next.
4) Change Manipulation Network: For each visual attribute a ∈ A (e.g. shape, size, . . . ), we
have a separate change neural network that takes the pair of (object embedding, embedding of the
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changed concept) as input and outputs the embedding of the changed object. For example, let
gcolor : Rdobj+dattr −→ Rdobj represent the neural network that changes the color of an object. Consider
o ∈ Rdobj as the object embedding and cred ∈ Rdattr as the concept embedding for the red color,
then õ = gcolor(o; cred) ∈ Rdobj represents the changed object embedding, whose color would be
red. After applying the change neural network, we obtain the changed representation of the object
õ = ga(o; cs∗a), where s∗a is the desired changed value for the attribute a. This network is trained
using following losses.

ℓa = −
∑

∀s∈Sa

Is=s∗a
log [p(ha (õ) = s)] (1)

ℓa = −
∑

∀a′∈A,a′ ̸=a

∑
∀s∈Sa′

p(ha′(o) = s) log [p(ha′(õ) = s)] (2)

where, ha(x) gives the concept value of the attribute a (in symbolic form s ∈ Sa) for the object x. The
quantity p (ha(x) = s) denotes the probability that the concept value of the attribute a for the object
x is equal to s and is given as follows p (ha(x) = s) = expdist(fa(x),cs)/

∑
s̃∈Sa

expdist(fa(x),cs̃)

where, dist(a, b) = (a⊤b− t2)/t1 is the shifted and scaled cosine similarity, t1, t2 being constants.
The first loss term ℓa penalizes the model if the value of the attribute a for the manipulated object is
different from the desired value s∗a in terms of probabilities. The second term ℓa, on the other hand,
penalizes the model if the values of any of the other attributes a′, deviate from their original values.
Apart from these losses, we also include following additional losses.

ℓcycle = ∥o− ga(õ; cold)∥2 (3)
ℓconsistency = ∥o− ga(o; cold)∥2 (4)

ℓobjGAN = −
∑

o′∈O
[logD(o′) + log(1−D (ga(o

′; c)))] (5)

where cold is the original value of the attribute a of object o, before undergoing change. Intuitively
the first loss term ℓcycle says that changing an object and then changing it back should result in the
same object. The second loss term ℓconsistency intuitively means that changing an object o that has
value cold for attribute a, into a new object with the same value cold, should not result in any change.
These additional losses prevent the change network from changing attributes which are not explicitly
taken care in earlier losses (1) and (2). For example, rotation or location attributes of the objects that
are not part of our DSL. We also impose an adversarial loss ℓobjGAN to ensure that the new object
embedding õ is from the same distribution as real object embeddings. D stands for discriminator in
equation (5). Total loss is a weighted sum of equations (1) to (5).

Method
β = 5.4k β = 7k β = 10k β = 20k β = 54k

FID R1 R3 FID R1 R3 FID R1 R3 FID R1 R3 FID R1 R3

GeNeVA 27.6 5.9 36.3 – – – – – – – – – 16.0 4.1 39.4

TIM-GAN 18.0 41.0 72.1 15.0 42.9 73.5 13.1 49.8 77.3 14.8 62.5 84.2 13.5 78.3 92.3
NEUROSIM 16.6 57.2 79.4 16.4 57.3 79.3 16.9 57.2 79.3 16.7 57.2 79.4 16.8 57.1 79.3

Table 1: Performance comparison of NEUROSIM with TIM-GAN [13] and GeNeVA [3] with varying
the number of examples (β) of CIM-NLI used during training. The ‘-’ entries for GeNeVa were not
computed due to excessive training time; it’s performance is low even when using full data.

3.3 Image Rendering from Scene Graph

5) Rendering Network: Design and training methodology for this module closely follows [9]. We
take multiple images {I1, I2 · · · In} and generate their scene graph {GI1 , GI2 · · ·GIn} using the
visual representation network described earlier. Each of these scene graphs is then transformed into
the final image using the scene graph to image generation architecture described in [9].

4 Experiments

1) Dataset: We create a multi-object multi-hop instruction based image manipulation dataset, referred
to as CIM-NLI. This dataset was generated with the help of CLEVR toolkit [8]. CIM-NLI consists
of (source image I , manipulation instruction text T , manipulated target image Ĩ∗) tuples.
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2) Baselines: We compare our model with supervised approaches, TIM-GAN[13] and GeNeVA[3].

3) Evaluation Metrics:

Method Reasoning
ZH MH

GeNeVA (5.4K) 4.7 6.3

TIM-GAN (5.4K) 54.5 36.5

NEUROSIM (5.4K) 59.5 56.5

Table 2: R1 results for 0-hop (ZH)
vs. multi-hop (MH) instruction
guided image manipulation. Along
with each method, number of train-
ing data points from CIM-NLI
used are written in bracket.

For evaluation on image manipulation task, we use two metrics
- i) FID, ii) Recall@k. FID [5] measures the realism of the gen-
erated image. Recall@k measures the semantic similarity of
gold manipulated image Ĩ∗ and system produced manipulated
image Ĩ . We compute Recall@k as in Zhang et al. [13].
4) Results: Let β denote the number of examples from CIM-
NLI dataset seen by NEUROSIM during training. Table 1
shows NEUROSIM (being weakly supervised) performs signif-
icantly better than baselines when trained with β ≤ 10k and
very close to its closest competitor with β = 20k examples
using the R@1 performance metric. This clearly demonstrates
the strength of NEUROSIM in learning to manipulate while
only making use of VQA annotations.

5) Multi-hop Reasoning Performance: Table 2 compares baselines with NEUROSIM on instructions
requiring 0-hop versus multi-hop (1-3 hops) reasoning. When dealing with multi-hop instructions per-
formance of TIM-GAN drops significantly, whereas NEUROSIM results in almost equal performance
on both sets implying that it is effective at handling complex reasoning tasks.

6) Qualitative Assessment: Figure 3 compares the images generated by NEUROSIM, TIM-GAN,
and GeNeVA. Some of the images generated by TIM-GAN and GeNeVA contain smudges where
the manipulation has been done partially, while NEUROSIM suffers less from this problem. Overall
visual appearance of TIM-GAN is better in a some cases owing to fully supervised training.

TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a rubber thing in front 
of the red matte ball; change the 
shape of it to cylinder. 

Change material of the rubber 
object in front of the small 
rubber thing that is left of the 
tiny gray matte sphere that is in 
front of the yellow block to shiny.

There is a small matte thing; 
change the color of it to purple.

Ground Truth 

There is a cylinder that is behind 
the small metallic cylinder; 
change the size of it to tiny.

There is a tiny cylinder that is to 
the left of the small blue thing to 
the left of the big green metallic 
cylinder; change the material of 
it to matte.

Figure 3: Visual comparison of NEUROSIM results with TIM-GAN [13] and GeNeVA [3].

5 Conclusion and Future Work

In this paper, we present a neuro-symbolic approach NEUROSIM to solve image manipulation task
using weak supervision of VQA annotations. Our approach builds on existing work on neuro-symbolic
VQA [10] to incorporate manipulation operations. The manipulation is achieved via generation
of latent symbolic programs. Our experiments on a newly created dataset of image manipulation
demonstrates the potential of our approach compared to supervised baselines. In future, we intend to
extend this approach to other image editing operators and real images.
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Image Manipulation via Neuro-Symbolic Networks
(Appendix)

A Domain Specific Language (DSL)

Table 1 captures the DSL used by our NEUROSIM pipeline. The first 5 constructs in this table are
common with the DSL used in [3]. The last operation (Change) was added by us to allow for the
manipulation operation. Table 2 show the type system used by the DSL in this work. It is inherited

Operation Signature [Output← Input]) Semantics

Scene ObjSet← () Returns all objects in the scene.

Filter ObjSet← (ObjSet, ObjConcept) Filter out a set of objects from ObjSet that have
concept (e.g. red) specified in ObjConcept.

Relate ObjSet← (ObjSet, RelConcept, Obj)
Filter out a set of objects from ObjSet that
have concept specified relation concept (e.g.
RightOf) with object Obj.

Query ObjConcept← (Obj, Attribute) Returns the Attribute value for the object Obj.

Exist Bool← (ObjSet) Checks if the set ObjSet is empty.

Change Obj← (Obj, Concept)
Changes the attribute value of the input object
(Obj), corresponding to the input concept, to
Concept

Table 1: Extended Domain Specific Language (DSL) used by NEUROSIM.

from [3].

Type Remarks

ObjConcept Concepts for any given object, such as blue, cylinder, etc.

Attribute Attributes for any given object, such as color, shape, etc.

RelConcept Relational concepts for any given object pair, such as RightOf, LeftOf, etc.

Object Depicts a single object

ObjectSet Depicts multiple objects
Table 2: Extended type system for the DSL used by NEUROSIM.

Neuro Causal and Symbolic AI Workshop at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).



B Dataset Details

B.1 CIM-NLI Dataset

This dataset was generated with the help of CLEVR toolkit [2] by using following recipe.

1. First, we create a source image I and the corresponding scene data by using Blender [1] software.
2. For each source image I created above, we generate multiple instruction texts T ’s using its scene

data. These are generated using templates, similar to question templates proposed by [2].
3. For each such (I, T ) pair, we attach a corresponding symbolic program P (not used by NEU-

ROSIM though) as well as scene data for the corresponding changed image.

4. Finally, for each (I, T ) pair, we generate the target gold image Ĩ∗ using Blender software and its
scene data from previous step.
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